RESUMO
Objective: Assessing pain in individuals with neurological conditions like cerebral palsy is challenging due to limited self-reporting and expression abilities. Current methods lack sensitivity and specificity, underlining the need for a reliable evaluation protocol. An automated facial recognition system could revolutionize pain assessment for such patients.The research focuses on two primary goals: developing a dataset of facial pain expressions for individuals with cerebral palsy and creating a deep learning-based automated system for pain assessment tailored to this group. Methods: The study trained ten neural networks using three pain image databases and a newly curated CP-PAIN Dataset of 109 images from cerebral palsy patients, classified by experts using the Facial Action Coding System. Results: The InceptionV3 model demonstrated promising results, achieving 62.67% accuracy and a 61.12% F1 score on the CP-PAIN dataset. Explainable AI techniques confirmed the consistency of crucial features for pain identification across models. Conclusion: The study underscores the potential of deep learning in developing reliable pain detection systems using facial recognition for individuals with communication impairments due to neurological conditions. A more extensive and diverse dataset could further enhance the models' sensitivity to subtle pain expressions in cerebral palsy patients and possibly extend to other complex neurological disorders. This research marks a significant step toward more empathetic and accurate pain management for vulnerable populations.