Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(9): e202216220, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36591907

RESUMO

Enzymatic degradation and recycling can reduce the environmental impact of plastics. Despite decades of research, no enzymes for the efficient hydrolysis of polyurethanes have been reported. Whereas the hydrolysis of the ester bonds in polyester-polyurethanes by cutinases is known, the urethane bonds in polyether-polyurethanes have remained inaccessible to biocatalytic hydrolysis. Here we report the discovery of urethanases from a metagenome library constructed from soil that had been exposed to polyurethane waste for many years. We then demonstrate the use of a urethanase in a chemoenzymatic process for polyurethane foam recycling. The urethanase hydrolyses low molecular weight dicarbamates resulting from chemical glycolysis of polyether-polyurethane foam, making this strategy broadly applicable to diverse polyether-polyurethane wastes.


Assuntos
Carbamatos , Poliuretanos , Poliuretanos/química , Hidrólise , Peso Molecular , Reciclagem , Biodegradação Ambiental
2.
Methods Mol Biol ; 2555: 153-165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36306085

RESUMO

Due to the promise of more sustainable recycling of plastics through biocatalytic degradation, the search for and engineering of polyester hydrolases have become a thriving field of research. Furthermore, among other methods, halo formation assays have become popular for the detection of polyester-hydrolase activity. However, established halo-formation assays are limited in their ability to screen for thermostable enzymes, which are particularly important for efficient plastic degradation. The incubation of screening plates at temperatures above 50 °C leads to cell lysis and death. Therefore, equivalent master plates are commonly required to maintain and identify the active strains found on the screening plates. This replica plating procedure necessitates 20- to 60-fold more plates than our method, assuming the screened library is transferred to 384-well microtiter plates or 96-well microtiter plates, respectively, to organize the colonies in a retraceable manner, thus significantly lowering throughput. Here, we describe a halo formation assay that is designed to screen thermostable polyesterases independent of master plates and colony replication, thereby markedly reducing the workload and increasing the throughput.


Assuntos
Ensaios de Triagem em Larga Escala , Hidrolases , Hidrolases/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Poliésteres , Biocatálise , Biblioteca Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa