RESUMO
BACKGROUND: Closed-loop control systems of insulin delivery may improve glycemic outcomes in young children with type 1 diabetes. The efficacy and safety of initiating a closed-loop system virtually are unclear. METHODS: In this 13-week, multicenter trial, we randomly assigned, in a 2:1 ratio, children who were at least 2 years of age but younger than 6 years of age who had type 1 diabetes to receive treatment with a closed-loop system of insulin delivery or standard care that included either an insulin pump or multiple daily injections of insulin plus a continuous glucose monitor. The primary outcome was the percentage of time that the glucose level was in the target range of 70 to 180 mg per deciliter, as measured by continuous glucose monitoring. Secondary outcomes included the percentage of time that the glucose level was above 250 mg per deciliter or below 70 mg per deciliter, the mean glucose level, the glycated hemoglobin level, and safety outcomes. RESULTS: A total of 102 children underwent randomization (68 to the closed-loop group and 34 to the standard-care group); the glycated hemoglobin levels at baseline ranged from 5.2 to 11.5%. Initiation of the closed-loop system was virtual in 55 patients (81%). The mean (±SD) percentage of time that the glucose level was within the target range increased from 56.7±18.0% at baseline to 69.3±11.1% during the 13-week follow-up period in the closed-loop group and from 54.9±14.7% to 55.9±12.6% in the standard-care group (mean adjusted difference, 12.4 percentage points [equivalent to approximately 3 hours per day]; 95% confidence interval, 9.5 to 15.3; P<0.001). We observed similar treatment effects (favoring the closed-loop system) on the percentage of time that the glucose level was above 250 mg per deciliter, on the mean glucose level, and on the glycated hemoglobin level, with no significant between-group difference in the percentage of time that the glucose level was below 70 mg per deciliter. There were two cases of severe hypoglycemia in the closed-loop group and one case in the standard-care group. One case of diabetic ketoacidosis occurred in the closed-loop group. CONCLUSIONS: In this trial involving young children with type 1 diabetes, the glucose level was in the target range for a greater percentage of time with a closed-loop system than with standard care. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases; PEDAP ClinicalTrials.gov number, NCT04796779.).
Assuntos
Glicemia , Diabetes Mellitus Tipo 1 , Hipoglicemiantes , Sistemas de Infusão de Insulina , Insulina , Criança , Pré-Escolar , Humanos , Glicemia/análise , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hemoglobinas Glicadas/análise , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/efeitos adversos , Insulina/uso terapêutico , Sistemas de Infusão de Insulina/efeitos adversosRESUMO
BACKGROUND: Currently available semiautomated insulin-delivery systems require individualized insulin regimens for the initialization of therapy and meal doses based on carbohydrate counting for routine operation. In contrast, the bionic pancreas is initialized only on the basis of body weight, makes all dose decisions and delivers insulin autonomously, and uses meal announcements without carbohydrate counting. METHODS: In this 13-week, multicenter, randomized trial, we randomly assigned in a 2:1 ratio persons at least 6 years of age with type 1 diabetes either to receive bionic pancreas treatment with insulin aspart or insulin lispro or to receive standard care (defined as any insulin-delivery method with unblinded, real-time continuous glucose monitoring). The primary outcome was the glycated hemoglobin level at 13 weeks. The key secondary outcome was the percentage of time that the glucose level as assessed by continuous glucose monitoring was below 54 mg per deciliter; the prespecified noninferiority limit for this outcome was 1 percentage point. Safety was also assessed. RESULTS: A total of 219 participants 6 to 79 years of age were assigned to the bionic-pancreas group, and 107 to the standard-care group. The glycated hemoglobin level decreased from 7.9% to 7.3% in the bionic-pancreas group and did not change (was at 7.7% at both time points) in the standard-care group (mean adjusted difference at 13 weeks, -0.5 percentage points; 95% confidence interval [CI], -0.6 to -0.3; P<0.001). The percentage of time that the glucose level as assessed by continuous glucose monitoring was below 54 mg per deciliter did not differ significantly between the two groups (13-week adjusted difference, 0.0 percentage points; 95% CI, -0.1 to 0.04; P<0.001 for noninferiority). The rate of severe hypoglycemia was 17.7 events per 100 participant-years in the bionic-pancreas group and 10.8 events per 100 participant-years in the standard-care group (P = 0.39). No episodes of diabetic ketoacidosis occurred in either group. CONCLUSIONS: In this 13-week, randomized trial involving adults and children with type 1 diabetes, use of a bionic pancreas was associated with a greater reduction than standard care in the glycated hemoglobin level. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; ClinicalTrials.gov number, NCT04200313.).
Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemiantes , Insulina Aspart , Sistemas de Infusão de Insulina , Insulina Lispro , Adolescente , Adulto , Idoso , Biônica/instrumentação , Glicemia/análise , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Criança , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/efeitos adversos , Insulina/uso terapêutico , Insulina Aspart/administração & dosagem , Insulina Aspart/efeitos adversos , Insulina Aspart/uso terapêutico , Sistemas de Infusão de Insulina/efeitos adversos , Insulina Lispro/administração & dosagem , Insulina Lispro/efeitos adversos , Insulina Lispro/uso terapêutico , Pessoa de Meia-Idade , Adulto JovemRESUMO
AIM: Automated insulin delivery (AID) systems have demonstrated improved glycaemic outcomes in people with type 1 diabetes (T1D), yet limited data exist on these systems in very young children and their impact on caregivers. We evaluated psychosocial outcomes following use of the tubeless Omnipod® 5 AID System in caregivers of very young children. MATERIALS AND METHODS: This 3-month single-arm, multicentre, pivotal clinical trial enrolled 80 children aged 2.0-5.9 years with T1D to use the Omnipod 5 AID System. Caregivers completed questionnaires assessing psychosocial outcomes-diabetes distress (Problem Areas in Diabetes), hypoglycaemia confidence (Hypoglycemia Confidence Scale), well-being (World Health Organization 5 Well-Being Index), sleep quality (Pittsburgh Sleep Quality Index), insulin delivery satisfaction (Insulin Delivery Satisfaction Survey) and system usability (System Usability Scale) at baseline with standard therapy and after 3 months of AID use. RESULTS: Following 3 months of Omnipod 5 use, caregivers experienced significant improvements across all measures, including diabetes-related psychosocial outcomes (Problem Areas in Diabetes; p < 0.0001, Hypoglycemia Confidence Scale; p < 0.01), well-being (World Health Organization 5 Well-Being Index; p < 0.0001) and perceived system usability (System Usability Scale; p < 0.0001). Significant improvements were seen in the Pittsburgh Sleep Quality Index total score and the overall sleep quality, sleep duration and efficiency subscales (all p < 0.05). Insulin Delivery Satisfaction Survey scores improved on all subscales (greater satisfaction, reduced burden and reduced inconvenience; all p < 0.0001). CONCLUSIONS: Caregivers face unique challenges when managing T1D in very young children. While glycaemic metrics have unquestioned importance, these results evaluating psychosocial outcomes reveal additional meaningful benefits and suggest that the Omnipod 5 AID System alleviates some of the burdens caregivers face with diabetes management.
RESUMO
BACKGROUND: A closed-loop system of insulin delivery (also called an artificial pancreas) may improve glycemic outcomes in children with type 1 diabetes. METHODS: In a 16-week, multicenter, randomized, open-label, parallel-group trial, we assigned, in a 3:1 ratio, children 6 to 13 years of age who had type 1 diabetes to receive treatment with the use of either a closed-loop system of insulin delivery (closed-loop group) or a sensor-augmented insulin pump (control group). The primary outcome was the percentage of time that the glucose level was in the target range of 70 to 180 mg per deciliter, as measured by continuous glucose monitoring. RESULTS: A total of 101 children underwent randomization (78 to the closed-loop group and 23 to the control group); the glycated hemoglobin levels at baseline ranged from 5.7 to 10.1%. The mean (±SD) percentage of time that the glucose level was in the target range of 70 to 180 mg per deciliter increased from 53±17% at baseline to 67±10% (the mean over 16 weeks of treatment) in the closed-loop group and from 51±16% to 55±13% in the control group (mean adjusted difference, 11 percentage points [equivalent to 2.6 hours per day]; 95% confidence interval, 7 to 14; P<0.001). In both groups, the median percentage of time that the glucose level was below 70 mg per deciliter was low (1.6% in the closed-loop group and 1.8% in the control group). In the closed-loop group, the median percentage of time that the system was in the closed-loop mode was 93% (interquartile range, 91 to 95). No episodes of diabetic ketoacidosis or severe hypoglycemia occurred in either group. CONCLUSIONS: In this 16-week trial involving children with type 1 diabetes, the glucose level was in the target range for a greater percentage of time with the use of a closed-loop system than with the use of a sensor-augmented insulin pump. (Funded by Tandem Diabetes Care and the National Institute of Diabetes and Digestive and Kidney Diseases; ClinicalTrials.gov number, NCT03844789.).
Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Bombas de Infusão Implantáveis , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Adolescente , Glicemia/análise , Criança , Diabetes Mellitus Tipo 1/sangue , Cetoacidose Diabética/etiologia , Feminino , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/efeitos adversos , Injeções Subcutâneas , Insulina/efeitos adversos , Sistemas de Infusão de Insulina/efeitos adversos , Masculino , Pâncreas ArtificialRESUMO
Regular exercise is essential to overall cardiovascular health and well-being in people with type 1 diabetes, but exercise can also lead to increased glycemic disturbances. Automated insulin delivery (AID) technology has been shown to modestly improve glycemic time in range (TIR) in adults with type 1 diabetes and significantly improve TIR in youth with type 1 diabetes. Available AID systems still require some user-initiated changes to the settings and, in some cases, significant pre-planning for exercise. Many exercise recommendations for type 1 diabetes were developed initially for people using multiple daily insulin injections or insulin pump therapy. This article highlights recommendations and practical strategies for using AID around exercise in type 1 diabetes.
RESUMO
Importance: Near normalization of glucose levels instituted immediately after diagnosis of type 1 diabetes has been postulated to preserve pancreatic beta cell function by reducing glucotoxicity. Previous studies have been hampered by an inability to achieve tight glycemic goals. Objective: To determine the effectiveness of intensive diabetes management to achieve near normalization of glucose levels on preservation of pancreatic beta cell function in youth with newly diagnosed type 1 diabetes. Design, Setting, and Participants: This randomized, double-blind, clinical trial was conducted at 6 centers in the US (randomizations from July 20, 2020, to October 13, 2021; follow-up completed September 15, 2022) and included youths with newly diagnosed type 1 diabetes aged 7 to 17 years. Interventions: Random assignment to intensive diabetes management, which included use of an automated insulin delivery system (n = 61), or standard care, which included use of a continuous glucose monitor (n = 52), as part of a factorial design in which participants weighing 30 kg or more also were assigned to receive either oral verapamil or placebo. Main Outcomes and Measures: The primary outcome was mixed-meal tolerance test-stimulated C-peptide area under the curve (a measure of pancreatic beta cell function) 52 weeks from diagnosis. Results: Among 113 participants (mean [SD] age, 11.8 [2.8] years; 49 females [43%]; mean [SD] time from diagnosis to randomization, 24 [5] days), 108 (96%) completed the trial. The mean C-peptide area under the curve decreased from 0.57 pmol/mL at baseline to 0.45 pmol/mL at 52 weeks in the intensive management group, and from 0.60 to 0.50 pmol/mL in the standard care group (treatment group difference, -0.01 [95% CI, -0.11 to 0.10]; P = .89). The mean time in the target range of 70 to 180 mg/dL, measured with continuous glucose monitoring, at 52 weeks was 78% in the intensive management group vs 64% in the standard care group (adjusted difference, 16% [95% CI, 10% to 22%]). One severe hypoglycemia event and 1 diabetic ketoacidosis event occurred in each group. Conclusions and Relevance: In youths with newly diagnosed type 1 diabetes, intensive diabetes management, which included automated insulin delivery, achieved excellent glucose control but did not affect the decline in pancreatic C-peptide secretion at 52 weeks. Trial Registration: ClinicalTrials.gov Identifier: NCT04233034.
Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Feminino , Adolescente , Humanos , Criança , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/administração & dosagem , Glicemia/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeo C/farmacologia , Peptídeo C/uso terapêutico , Método Duplo-Cego , Controle Glicêmico , Automonitorização da Glicemia , Hemoglobinas Glicadas , Insulina/efeitos adversos , Insulina/administração & dosagemRESUMO
Importance: In preclinical studies, thioredoxin-interacting protein overexpression induces pancreatic beta cell apoptosis and is involved in glucotoxicity-induced beta cell death. Calcium channel blockers reduce these effects and may be beneficial to beta cell preservation in type 1 diabetes. Objective: To determine the effect of verapamil on pancreatic beta cell function in children and adolescents with newly diagnosed type 1 diabetes. Design, Setting, and Participants: This double-blind, randomized clinical trial including children and adolescents aged 7 to 17 years with newly diagnosed type 1 diabetes who weighed 30 kg or greater was conducted at 6 centers in the US (randomized participants between July 20, 2020, and October 13, 2021) and follow-up was completed on September 15, 2022. Interventions: Participants were randomly assigned 1:1 to once-daily oral verapamil (n = 47) or placebo (n = 41) as part of a factorial design in which participants also were assigned to receive either intensive diabetes management or standard diabetes care. Main Outcomes and Measures: The primary outcome was area under the curve values for C-peptide level (a measure of pancreatic beta cell function) stimulated by a mixed-meal tolerance test at 52 weeks from diagnosis of type 1 diabetes. Results: Among 88 participants (mean age, 12.7 [SD, 2.4] years; 36 were female [41%]; and the mean time from diagnosis to randomization was 24 [SD, 4] days), 83 (94%) completed the trial. In the verapamil group, the mean C-peptide area under the curve was 0.66 pmol/mL at baseline and 0.65 pmol/mL at 52 weeks compared with 0.60 pmol/mL at baseline and 0.44 pmol/mL at 52 weeks in the placebo group (adjusted between-group difference, 0.14 pmol/mL [95% CI, 0.01 to 0.27 pmol/mL]; P = .04). This equates to a 30% higher C-peptide level at 52 weeks with verapamil. The percentage of participants with a 52-week peak C-peptide level of 0.2 pmol/mL or greater was 95% (41 of 43 participants) in the verapamil group vs 71% (27 of 38 participants) in the placebo group. At 52 weeks, hemoglobin A1c was 6.6% in the verapamil group vs 6.9% in the placebo group (adjusted between-group difference, -0.3% [95% CI, -1.0% to 0.4%]). Eight participants (17%) in the verapamil group and 8 participants (20%) in the placebo group had a nonserious adverse event considered to be related to treatment. Conclusions and Relevance: In children and adolescents with newly diagnosed type 1 diabetes, verapamil partially preserved stimulated C-peptide secretion at 52 weeks from diagnosis compared with placebo. Further studies are needed to determine the longitudinal durability of C-peptide improvement and the optimal length of therapy. Trial Registration: ClinicalTrials.gov Identifier: NCT04233034.
Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Adolescente , Humanos , Criança , Feminino , Masculino , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Peptídeo C/metabolismo , Peptídeo C/farmacologia , Peptídeo C/uso terapêutico , Método Duplo-Cego , Verapamil/efeitos adversos , Células Secretoras de Insulina/efeitos dos fármacosRESUMO
BACKGROUND: Closed-loop systems that automate insulin delivery may improve glycemic outcomes in patients with type 1 diabetes. METHODS: In this 6-month randomized, multicenter trial, patients with type 1 diabetes were assigned in a 2:1 ratio to receive treatment with a closed-loop system (closed-loop group) or a sensor-augmented pump (control group). The primary outcome was the percentage of time that the blood glucose level was within the target range of 70 to 180 mg per deciliter (3.9 to 10.0 mmol per liter), as measured by continuous glucose monitoring. RESULTS: A total of 168 patients underwent randomization; 112 were assigned to the closed-loop group, and 56 were assigned to the control group. The age range of the patients was 14 to 71 years, and the glycated hemoglobin level ranged from 5.4 to 10.6%. All 168 patients completed the trial. The mean (±SD) percentage of time that the glucose level was within the target range increased in the closed-loop group from 61±17% at baseline to 71±12% during the 6 months and remained unchanged at 59±14% in the control group (mean adjusted difference, 11 percentage points; 95% confidence interval [CI], 9 to 14; P<0.001). The results with regard to the main secondary outcomes (percentage of time that the glucose level was >180 mg per deciliter, mean glucose level, glycated hemoglobin level, and percentage of time that the glucose level was <70 mg per deciliter or <54 mg per deciliter [3.0 mmol per liter]) all met the prespecified hierarchical criterion for significance, favoring the closed-loop system. The mean difference (closed loop minus control) in the percentage of time that the blood glucose level was lower than 70 mg per deciliter was -0.88 percentage points (95% CI, -1.19 to -0.57; P<0.001). The mean adjusted difference in glycated hemoglobin level after 6 months was -0.33 percentage points (95% CI, -0.53 to -0.13; P = 0.001). In the closed-loop group, the median percentage of time that the system was in closed-loop mode was 90% over 6 months. No serious hypoglycemic events occurred in either group; one episode of diabetic ketoacidosis occurred in the closed-loop group. CONCLUSIONS: In this 6-month trial involving patients with type 1 diabetes, the use of a closed-loop system was associated with a greater percentage of time spent in a target glycemic range than the use of a sensor-augmented insulin pump. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases; iDCL ClinicalTrials.gov number, NCT03563313.).
Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Pâncreas Artificial , Adolescente , Adulto , Idoso , Glicemia/análise , Diabetes Mellitus Tipo 1/sangue , Desenho de Equipamento , Feminino , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos , Sistemas de Infusão de Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Pâncreas Artificial/efeitos adversos , Adulto JovemRESUMO
AIM: To examine changes in the lived experience of type 1 diabetes after use of hybrid closed loop (CL), including the CamAPS FX CL system. MATERIALS AND METHODS: The primary study was conducted as an open-label, single-period, randomized, parallel design contrasting CL versus insulin pump (with or without continuous glucose monitoring). Participants were asked to complete patient-reported outcomes before starting CL and 3 and 6 months later. Surveys assessed diabetes distress, hypoglycaemia concerns and quality of life. Qualitative focus group data were collected at the completion of the study. RESULTS: In this sample of 98 youth (age range 6-18, mean age 12.7 ± 2.8 years) and their parents, CL use was not associated with psychosocial benefits overall. However, the subgroup (n = 12) using the CamAPS FX system showed modest improvements in quality of life and parent distress, reinforced by both survey (p < .05) and focus group responses. There were no negative effects of CL use reported by study participants. CONCLUSIONS: Closed loop use via the CamAPS FX system was associated with modest improvements in aspects of the lived experience of managing type 1 diabetes in youth and their families. Further refinements of the system may optimize the user experience.
Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Humanos , Criança , Diabetes Mellitus Tipo 1/tratamento farmacológico , Automonitorização da Glicemia , Insulina/uso terapêutico , Qualidade de Vida , Hipoglicemiantes/uso terapêutico , Glicemia , Resultado do Tratamento , Sistemas de Infusão de Insulina , Pais/psicologiaRESUMO
BACKGROUND: Prompt and reliable management of hypoglycemia in youth with diabetes is important to prevent serious medical complications. OBJECTIVES: To determine efficacy, pharmacodynamics (PD), pharmacokinetics (PK), safety, and tolerability of a ready-to-use, liquid stable glucagon formulation administered subcutaneously via an autoinjector pen to youth with type 1 diabetes (T1D). METHODS: After plasma glucose concentration was < 80 mg/dL (< 4.4 mmol/L) after insulin, participants aged 2 to < 12 years with T1D were administered 0.5 mg of glucagon; participants aged 12 to < 18 years instead received 1 mg of glucagon. Then, adolescents were challenged with 0.5 mg after a 7- to 28-day washout period. Primary endpoint was mean plasma glucose concentration at 30 min after glucagon. RESULTS: Plasma glucose concentrations significantly (p < 0.001) increased from baseline to 30 min after glucagon, with mean change in plasma glucose concentration between baseline and 30 min for each age cohort as follows: 2 to < 6 years (n = 7; 81.4 mg/dL [4.5 mmol/L]); 6 to < 12 years (13; 84.2 mg/dL [4.7 mmol/L]); 12 to < 18 years (11; dose, 1 mg; 54.0 mg/dL [3.0 mmol/L]); and 12 to < 18 years (11; 0.5 mg; 52.4 mg/dL [2.9 mmol/L]). Among age cohorts, no clinically relevant differences were observed for PD and PK parameters. Common adverse events were nausea, vomiting, and hypoglycemia. CONCLUSION: Age-appropriate dosing of this glucagon formulation was effective at 30 min in reversing plasma glucose concentrations from < 80 mg/dL in youth with T1D.
Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Adolescente , Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glucagon , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemiantes , Insulina , TemperaturaRESUMO
BACKGROUND: Highly variable insulin sensitivity, susceptibility to hypoglycemia and inability to effectively communicate hypoglycemic symptoms pose significant challenges for young children with type 1 diabetes (T1D). Herein, outcomes during clinical MiniMed™ 670G system use were evaluated in children aged 2-6 years with T1D. METHODS: Participants (N = 46, aged 4.6 ± 1.4 years) at seven investigational centers used the MiniMed™ 670G system in Manual Mode during a two-week run-in period followed by Auto Mode during a three-month study phase. Safety events, mean A1C, sensor glucose (SG), and percentage of time spent in (TIR, 70-180 mg/dl), below (TBR, <70 mg/dl) and above (TAR, >180 mg/dl) range were assessed for the run-in and study phase and compared using a paired t-test or Wilcoxon signed-rank test. RESULTS: From run-in to end of study (median 87.1% time in auto mode), mean A1C and SG changed from 8.0 ± 0.9% to 7.5 ± 0.6% (p < 0.001) and from 173 ± 24 to 161 ± 16 mg/dl (p < 0.001), respectively. Overall TIR increased from 55.7 ± 13.4% to 63.8 ± 9.4% (p < 0.001), while TBR and TAR decreased from 3.3 ± 2.5% to 3.2 ± 1.6% (p = 0.996) and 41.0 ± 14.7% to 33.0 ± 9.9% (p < 0.001), respectively. Overnight TBR remained unchanged and TAR was further improved 12:00 am-6:00 am. Throughout the study phase, there were no episodes of severe hypoglycemia or diabetic ketoacidosis (DKA) and no serious adverse device-related events. CONCLUSIONS: At-home MiniMed™ 670G Auto Mode use by young children safely improved glycemic outcomes compared to two-week open-loop Manual Mode use. The improvements are similar to those observed in older children, adolescents and adults with T1D using the same system for the same duration of time.
Assuntos
Diabetes Mellitus Tipo 1 , Sistemas de Infusão de Insulina , Glicemia , Automonitorização da Glicemia , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Sistemas de Infusão de Insulina/efeitos adversosAssuntos
Diabetes Mellitus , Tecnologia Digital , Aplicativos Móveis , Humanos , Diabetes Mellitus/terapia , TecnologiaRESUMO
Current insulin infusion sets are approved for only 2-3 days. The novel ConvaTec infusion set with Lantern technology is designed to extend infusion set wear time. The goal of this pilot study was to evaluate the duration of wear for this set. This was a pilot safety study in adults with type 1 diabetes using tethered insulin pumps. Participants inserted the set and wore it for 10 days or until failure. Among 24 participants, two were excluded. Forty-five per cent of the sets lasted 10 days. Median wear time was 9.1 (7.1, 10.0) days. Among 12 premature failures, six (50%) involved adhesive failures, four (33%) hyperglycaemia unresponsive to correction, one (8%) hyperglycaemia with ketones and one (8%) infection. Average CGM glucose per day of infusion set wear showed a statistically significant increase over time, while total daily insulin over the same period did not change. In this pilot study, the duration of wear for the novel infusion set exceeded previously reported commercial sets (P < .001). This extended wear technology may eventually allow for a combined glucose sensor and infusion set.
Assuntos
Automonitorização da Glicemia , Diabetes Mellitus Tipo 1 , Adulto , Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Projetos Piloto , TecnologiaRESUMO
Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin-dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (i.e. before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes. Graphical abstract.
Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Glicemia/metabolismo , Automonitorização da Glicemia , Exercício Físico/fisiologia , Humanos , Qualidade de VidaRESUMO
When considered as a group, children with type 1 diabetes have subtle cognitive deficits relative to neurotypical controls. However, the neural correlates of these differences remain poorly understood. Using functional near-infrared spectroscopy (fNIRS), we investigated the brain functional activations of young adolescents (19 individuals with type 1 diabetes, 18 healthy controls, ages 8-16 years) during a Go/No-Go response inhibition task. Both cohorts had the same performance on the task, but the individuals with type 1 diabetes subjects had higher activations in a frontal-parietal network including the bilateral supramarginal gyri and bilateral rostrolateral prefrontal cortices. The activations in these regions were positively correlated with fewer parent-reported conduct problems (ie, lower Conduct Problem scores) on the Behavioral Assessment System for Children, Second Edition. Lower Conduct Problem scores are characteristic of less rule-breaking behavior suggesting a link between this brain network and better self-control. These findings are consistent with a large functional magnetic resonance imaging (fMRI) study of children with type 1 diabetes using completely different participants. Perhaps surprisingly, the between-group activation results from fNIRS were statistically stronger than the results using fMRI. This pilot study is the first fNIRS investigation of executive function for individuals with type 1 diabetes. The results suggest that fNIRS is a promising functional neuroimaging resource for detecting the brain correlates of behavior in the pediatric clinic.
Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Neuroimagem Funcional/métodos , Lobo Parietal/diagnóstico por imagem , Adolescente , Estudos de Casos e Controles , Criança , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/psicologia , Função Executiva/fisiologia , Feminino , Lobo Frontal/fisiopatologia , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Projetos Piloto , Espectroscopia de Luz Próxima ao Infravermelho/métodosRESUMO
Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin-dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (ie, before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes.
Assuntos
Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Exercício Físico , Controle Glicêmico/métodos , Adolescente , Adulto , Glicemia , Criança , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagemRESUMO
OBJECTIVE: Artificial pancreas (AP) systems have been shown to improve glycemic control throughout the day and night in adults, adolescents, and children. However, AP testing remains limited during intense and prolonged exercise in adolescents and children. We present the performance of the Tandem Control-IQ AP system in adolescents and children during a winter ski camp study, where high altitude, low temperature, prolonged intense activity, and stress challenged glycemic control. METHODS: In a randomized controlled trial, 24 adolescents (ages 13-18 years) and 24 school-aged children (6-12 years) with Type 1 diabetes (T1D) participated in a 48 hours ski camp (â¼5 hours skiing/day) at three sites: Wintergreen, VA; Kirkwood, and Breckenridge, CO. Study participants were randomized 1:1 at each site. The control group used remote monitored sensor-augmented pump (RM-SAP), and the experimental group used the t: slim X2 with Control-IQ Technology AP system. All subjects were remotely monitored 24 hours per day by study staff. RESULTS: The Control-IQ system improved percent time within range (70-180 mg/dL) over the entire camp duration: 66.4 ± 16.4 vs 53.9 ± 24.8%; P = .01 in both children and adolescents. The AP system was associated with a significantly lower average glucose based on continuous glucose monitor data: 161 ± 29.9 vs 176.8 ± 36.5 mg/dL; P = .023. There were no differences between groups for hypoglycemia exposure or carbohydrate interventions. There were no adverse events. CONCLUSIONS: The use of the Control-IQ AP improved glycemic control and safely reduced exposure to hyperglycemia relative to RM-SAP in pediatric patients with T1D during prolonged intensive winter sport activities.
Assuntos
Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Pâncreas Artificial , Esqui/fisiologia , Esportes/fisiologia , Adolescente , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Automonitorização da Glicemia/efeitos adversos , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Criança , Temperatura Baixa , Estudos Cross-Over , Desenho de Equipamento , Feminino , Humanos , Hiperglicemia/etiologia , Hipoglicemia/etiologia , Insulina/administração & dosagem , Insulina/efeitos adversos , Sistemas de Infusão de Insulina/efeitos adversos , Masculino , Pâncreas Artificial/efeitos adversos , Estações do AnoRESUMO
AIMS/HYPOTHESIS: Prior studies suggest white matter growth is reduced and white matter microstructure is altered in the brains of young children with type 1 diabetes when compared with brains of non-diabetic children, due in part to adverse effects of hyperglycaemia. This longitudinal observational study examines whether dysglycaemia alters the developmental trajectory of white matter microstructure over time in young children with type 1 diabetes. METHODS: One hundred and eighteen children, aged 4 to <10 years old with type 1 diabetes and 58 age-matched, non-diabetic children were studied at baseline and 18 months, at five Diabetes Research in Children Network clinical centres. We analysed longitudinal trajectories of white matter using diffusion tensor imaging. Continuous glucose monitoring profiles and HbA1c levels were obtained every 3 months. RESULTS: Axial diffusivity was lower in children with diabetes at baseline (p = 0.022) and at 18 months (p = 0.015), indicating that differences in white matter microstructure persist over time in children with diabetes. Within the diabetes group, lower exposure to hyperglycaemia, averaged over the time since diagnosis, was associated with higher fractional anisotropy (p = 0.037). Fractional anisotropy was positively correlated with performance (p < 0.002) and full-scale IQ (p < 0.02). CONCLUSIONS/INTERPRETATION: These results suggest that hyperglycaemia is associated with altered white matter development, which may contribute to the mild cognitive deficits in this population.
Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 1/complicações , Leucoencefalopatias/etiologia , Fatores Etários , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Desenvolvimento Infantil , Pré-Escolar , Disfunção Cognitiva/etiologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Imagem de Tensor de Difusão , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/fisiopatologia , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Prognóstico , Fatores de Risco , Fatores de Tempo , Estados UnidosRESUMO
BACKGROUND: The safety and effectiveness of a continuous, day-and-night automated glycaemic control system using insulin and glucagon has not been shown in a free-living, home-use setting. We aimed to assess whether bihormonal bionic pancreas initialised only with body mass can safely reduce mean glycaemia and hypoglycaemia in adults with type 1 diabetes who were living at home and participating in their normal daily routines without restrictions on diet or physical activity. METHODS: We did a random-order crossover study in volunteers at least 18 years old who had type 1 diabetes and lived within a 30 min drive of four sites in the USA. Participants were randomly assigned (1:1) in blocks of two using sequentially numbered sealed envelopes to glycaemic regulation with a bihormonal bionic pancreas or usual care (conventional or sensor-augmented insulin pump therapy) first, followed by the opposite intervention. Both study periods were 11 days in length, during which time participants continued all normal activities, including athletics and driving. The bionic pancreas was initialised with only the participant's body mass. Autonomously adaptive dosing algorithms used data from a continuous glucose monitor to control subcutaneous delivery of insulin and glucagon. The coprimary outcomes were the mean glucose concentration and time with continuous glucose monitoring (CGM) glucose concentration less than 3·3 mmol/L, analysed over days 2-11 in participants who completed both periods of the study. This trial is registered with ClinicalTrials.gov, number NCT02092220. FINDINGS: We randomly assigned 43 participants between May 6, 2014, and July 3, 2015, 39 of whom completed the study: 20 who were assigned to bionic pancreas first and 19 who were assigned to the comparator first. The mean CGM glucose concentration was 7·8 mmol/L (SD 0·6) in the bionic pancreas period versus 9·0 mmol/L (1·6) in the comparator period (difference 1·1 mmol/L, 95% CI 0·7-1·6; p<0·0001), and the mean time with CGM glucose concentration less than 3·3 mmol/L was 0·6% (0·6) in the bionic pancreas period versus 1·9% (1·7) in the comparator period (difference 1·3%, 95% CI 0·8-1·8; p<0·0001). The mean nausea score on the Visual Analogue Scale (score 0-10) was greater during the bionic pancreas period (0·52 [SD 0·83]) than in the comparator period (0·05 [0·17]; difference 0·47, 95% CI 0·21-0·73; p=0·0024). Body mass and laboratory parameters did not differ between periods. There were no serious or unexpected adverse events in the bionic pancreas period of the study. INTERPRETATION: Relative to conventional and sensor-augmented insulin pump therapy, the bihormonal bionic pancreas, initialised only with participant weight, was able to achieve superior glycaemic regulation without the need for carbohydrate counting. Larger and longer studies are needed to establish the long-term benefits and risks of automated glycaemic management with a bihormonal bionic pancreas. FUNDING: National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, and National Center for Advancing Translational Sciences.