RESUMO
A 32-year-old female with advanced human immunodeficiency virus infection presented to an Australian hospital with subacute, worsening symptoms of encephalitis. Metagenomic sequencing and Dengue NS3 antigen staining of brain tissue confirmed active dengue virus (DENV) encephalitis. The most recent possible DENV exposure was months prior in West Africa, indicating chronicity.
Assuntos
Vírus da Dengue , Dengue , Infecções por HIV , Humanos , Feminino , Adulto , Infecções por HIV/complicações , Dengue/complicações , Dengue/diagnóstico , Vírus da Dengue/genética , Encefalite Viral/virologia , Encefalite Viral/diagnóstico , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/virologia , Austrália , Doença CrônicaRESUMO
BACKGROUND: Biomarkers that reflect glioblastoma tumour activity and treatment response are urgently needed to help guide clinical management, particularly for recurrent disease. As the urinary system is a major clearance route of circulating extracellular vesicles (EVs; 30-1000 nm nanoparticles) we explored whether sampling urinary-EVs could serve as a simple and non-invasive liquid biopsy approach for measuring glioblastoma-associated biomarkers. METHODS: Fifty urine specimens (15-60 ml) were collected from 24 catheterised glioblastoma patients immediately prior to primary (n = 17) and recurrence (n = 7) surgeries, following gross total resection (n = 9), and from age/gender-matched healthy participants (n = 14). EVs isolated by differential ultracentrifugation were characterised and extracted proteomes were analysed by high-resolution data-independent acquisition liquid chromatography tandem mass spectrometry (DIA-LC-MS/MS). RESULTS: Overall, 6857 proteins were confidently identified in urinary-EVs (q-value ≤ 0.01), including 94 EV marker proteins. Glioblastoma-specific proteomic signatures were determined, and putative urinary-EV biomarkers corresponding to tumour burden and recurrence were identified (FC ≥ | 2 | , adjust p-val≤0.05, AUC > 0.9). CONCLUSION: In-depth DIA-LC-MS/MS characterisation of urinary-EVs substantiates urine as a viable source of glioblastoma biomarkers. The promising 'liquid gold' biomarker panels described here warrant further investigation.
Assuntos
Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/patologia , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem , Biomarcadores/metabolismo , Biópsia Líquida , Vesículas Extracelulares/metabolismoRESUMO
PURPOSE: The increasing importance of molecular markers for classification and prognostication of diffuse gliomas has prompted the use of imaging features to predict genotype ("radiogenomics"). CDKN2A/B homozygous deletion has only recently been added to the diagnostic paradigm for IDH[isocitrate dehydrogenase]-mutant astrocytomas; thus, associated radiogenomic literature is sparse. There is also little data on whether different IDH mutations are associated with different imaging appearances. Furthermore, given that molecular status is now generally obtained routinely, the additional prognostic value of radiogenomic features is less clear. This study correlated MRI features with CDKN2A/B status, IDH mutation type and survival in histological grade 2-3 IDH-mutant brain astrocytomas. METHODS: Fifty-eight grade 2-3 IDH-mutant astrocytomas were identified, 50 with CDKN2A/B results. IDH mutations were stratified into IDH1-R132H and non-canonical mutations. Background and survival data were obtained. Two neuroradiologists independently assessed the following MRI features: T2-FLAIR mismatch (<25%, 25-50%, >50%), well-defined tumour margins, contrast-enhancement (absent, wispy, solid) and central necrosis. RESULTS: 8/50 tumours with CDKN2A/B results demonstrated homozygous deletion; slightly shorter survival was not significant (p=0.571). IDH1-R132H mutations were present in 50/58 (86%). No MRI features correlated with CDKN2A/B status or IDH mutation type. T2-FLAIR mismatch did not predict survival (p=0.977), but well-defined margins predicted longer survival (HR 0.36, p=0.008), while solid enhancement predicted shorter survival (HR 3.86, p=0.004). Both correlations remained significant on multivariate analysis. CONCLUSION: MRI features did not predict CDKN2A/B homozygous deletion, but provided additional positive and negative prognostic information which correlated more strongly with prognosis than CDKN2A/B status in our cohort.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Marcadores Genéticos , Homozigoto , Deleção de Sequência , Mutação , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Isocitrato Desidrogenase/genéticaRESUMO
Chronic traumatic encephalopathy (CTE) is a neurodegenerative condition, in which the only known cause is exposure to repeated episodes of blunt head trauma. It most often occurs in professional and amateur athletes who have had frequent and repetitive cranial impacts during contact sports, but may also be found in victims of domestic violence, military personnel exposed to explosive devices and in individuals with severe epilepsy. The pathognomonic pathological findings are of neurofibrillary tangles and pretangles in the depths of the cerebral sulci caused by perivascular accumulation of phosphorylated Tau (pTau). Cases may be high profile requiring an evaluation of whether the neuropathological findings of CTE can be related to injuries previously sustained on the sporting field. Failure to examine the brain or to adequately sample appropriate areas at autopsy may lead to cases being overlooked and to an underestimation of the incidence of this condition in the community. Performing immunohistochemical staining for pTau in three areas from the neocortex has been found to be a useful screening tool for CTE. Ascertaining whether there is a history of head trauma, including exposure to contact sports, as a standard part of forensic clinical history protocols will help identify at-risk individuals so that Coronial consideration of the need for brain examination can be appropriately informed. Repetitive head trauma, particularly from contact sport, is being increasingly recognized as a cause of significant preventable neurodegeneration.
Assuntos
Encefalopatia Traumática Crônica , Traumatismos Craniocerebrais , Militares , Humanos , Encefalopatia Traumática Crônica/etiologia , Encefalopatia Traumática Crônica/patologia , Encéfalo/patologia , Emaranhados Neurofibrilares/patologia , Traumatismos Craniocerebrais/patologiaRESUMO
Both IDH1 (isocitrate dehydrogenase 1) and IDH2 (isocitrate dehydrogenase 2) mutations play a vital role in the development of gliomas through disruption of normal cellular metabolic processes. Here we describe a case of a patient with an IDH-mutant astrocytoma, in which both IDH1 and IDH2 mutations were detected within the same tumour. The patient remains disease-free, nine and a half years after her initial diagnosis. Interrogation of cancer genomic databases and a systematic review was undertaken, demonstrating the rarity of the co-occurrence of IDH1 and IDH2 mutations in a variety of cancer types, and in glioma specifically. Due to the favourable outcome observed in this patient, the potential effect of concurrent IDH1 and IDH2 mutations on survival was also investigated.
RESUMO
INTRODUCTION: Creutzfeldt-Jakob disease (CJD), a spongiform encephalopathy, caused by a transmissible misfolded cellular prion protein, is a rapidly progressive, debilitating neurodegenerative disorder with no effective treatment. The estimated global incidence is at 1/million inhabitants. This retrospective study examined the incidence of CJD in South Western Sydney Local Health District (SWSLHD) from 2014 to 2020. BACKGROUND: SWSLHD had an estimated population of 1,038,534 in 2020, with CJD data being limited. METHODS: The New South Wales (NSW) Health Information Exchange (HIE) database, for all admissions with CJD diagnoses in SWSLHD, between 2014 and 2020, was reviewed according to the WHO diagnostic criteria, consistent with the Australian national CJD registry. Only probable CJD cases were included. Incidence was calculated based on the projected SWSLHD population. RESULTS: Thirty-five patients, diagnosed with CJD, were identified. Each was evaluated by 2 independent investigators, including clinical presentation, MRI, EEGs, 14-3-3, and RT-QuIC results, before assigning CJD-probable status. Four failed the CJD criteria and were excluded. Of the 31 CJD-probable cases, most (59%) were male and older (37%, range 61-70 years). The incidence rate peaked at 9/million in 2017 and was above 2/million, throughout the 7 years, with an average of 4.859/million/year. CONCLUSIONS: The incidence of CJD, in SWSLHD, exceeds the national average of 1/million. Cost-effective, adequate diagnostic and screening tools, implementable over a large population, will become increasingly essential.
Assuntos
Síndrome de Creutzfeldt-Jakob , Austrália/epidemiologia , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/epidemiologia , Humanos , Incidência , Masculino , Doenças Raras , Estudos RetrospectivosRESUMO
PURPOSE: Molecular biomarkers are important for classifying intracranial gliomas, prompting research into correlating imaging with genotype ("radiogenomics"). A limitation of the existing radiogenomics literature is the paucity of studies specifically characterizing grade 2-3 gliomas into the three key molecular subtypes. Our study investigated the accuracy of multiple different conventional MRI features for genotype prediction. METHODS: Grade 2-3 gliomas diagnosed between 2007 and 2013 were identified. Two neuroradiologists independently assessed nine conventional MRI features. Features with better inter-observer agreement (κ ≥ 0.6) proceeded to consensus assessment. MRI features were correlated with genotype, classified as IDH-mutant and 1p/19q-codeleted (IDHmut/1p19qcodel), IDH-mutant and 1p/19q-intact (IDHmut/1p19qint), or IDH-wildtype (IDHwt). For IDHwt tumors, additional molecular markers of glioblastoma were noted. RESULTS: One hundred nineteen patients were included. T2-FLAIR mismatch (stratified as > 50%, 25-50%, or < 25%) was the most predictive feature across genotypes (p < 0.001). All 30 tumors with > 50% mismatch were IDHmut/1p19qint, and all seven with 25-50% mismatch. Well-defined margins correlated with IDHmut/1p19qint status on univariate analysis (p < 0.001), but this related to correlation with T2-FLAIR mismatch; there was no longer an association when considering only tumors with < 25% mismatch (p = 0.386). Enhancement (p = 0.001), necrosis (p = 0.002), and hemorrhage (p = 0.027) correlated with IDHwt status (especially "molecular glioblastoma"). Calcification correlated with IDHmut/1p19qcodel status (p = 0.003). A simple, step-wise algorithm incorporating these features, when present, correctly predicted genotype with a positive predictive value 91.8%. CONCLUSION: T2-FLAIR mismatch strongly predicts IDHmut/1p19qint even with a lower threshold of ≥ 25% mismatch and outweighs other features. Secondary features include enhancement, necrosis and hemorrhage (predicting IDHwt, especially "molecular glioblastoma"), and calcification (predicting IDHmut/1p19qcodel).
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Necrose , Isocitrato Desidrogenase/genética , MutaçãoRESUMO
Since its discovery in 2007, we have seen the lives of patients diagnosed with advanced anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancers (NSCLC) transform with the advent of molecular therapies with first-, second-, and third-generation ALK inhibitors now available in the clinic. Despite great gains in patient survival now measured in years and preserved quality of life with targeted therapies, drug resistance is unfortunately inevitably encountered in this rare and unique molecular subset of lung cancer, and patients will eventually succumb to the disease. As these patients are often young, fit, and never smokers, the clinical and scientific communities have aligned to expedite drug development and access. Drug resistance profiling and further strategies are being explored through clinical trials, including the evaluation of specific drug sequencing and combinations to overcome such resistance and promote patient longevity. The cases of this report focus on precision medicine and aim to portray the pertinent aspects to consider when treating ALK-rearranged NSCLC in 2020, an ever-shifting space. By way of case examples, this report offers valuable information to the treating clinician, including the evolution of systemic treatments and the management of oligo-progression and multisite drug resistance. With the maturation of real-world data, we are fortunate to be experiencing quality and length of life for patients with this disease surpassing prior expectations in advanced lung cancer. KEY POINTS: This report focuses on the importance of genetic analysis of serial biopsies to capture the dynamic therapeutic vulnerabilities of a patient's tumor, providing a perspective on the complexity of ALK tyrosine kinase inhibitor (ALKi) treatment sequencing. These case examples contribute to the literature on ALK-rearranged and oncogene addicted non-small cell lung cancer (NSCLC), providing a framework for care in the clinic. In oligo-progressive disease, local ablative therapy and continuation of ALKi postprogression should be considered with potential for sustained disease control. ALK G1202R kinase domain mutations (KDM), highly prevalent at resistance to second-generation ALKi resistances, may emerge in non-EML4-ALK variant 3 cases and is sensitive to third-generation lorlatinib. When in compound with one or more ALK KDMs, resistance to lorlatinib is expected. In the case of rampantly progressive disease, rebiopsy and redefining biology in a timely manner may be informative.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Qualidade de VidaRESUMO
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS) triggered by autoimmune mechanisms. Microglia are critical for the clearance of myelin debris in areas of demyelination, a key step to allow remyelination. TREM2 is expressed by microglia and promotes microglial survival, proliferation, and phagocytic activity. Herein we demonstrate that TREM2 was highly expressed on myelin-laden phagocytes in active demyelinating lesions in the CNS of subjects with MS. In gene expression studies, macrophages from subjects with TREM2 genetic deficiency displayed a defect in phagocytic pathways. Treatment with a new TREM2 agonistic antibody promoted the clearance of myelin debris in the cuprizone model of CNS demyelination. Effects included enhancement of myelin uptake and degradation, resulting in accelerated myelin debris removal by microglia. Most importantly, antibody-dependent TREM2 activation on microglia increased density of oligodendrocyte precursors in areas of demyelination, as well as the formation of mature oligodendrocytes thus enhancing remyelination and axonal integrity. These results are relevant as they propose TREM2 on microglia as a potential new target to promote remyelination.
Assuntos
Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Bainha de Mielina/patologia , Receptores Imunológicos/metabolismo , Remielinização/fisiologia , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Fagocitose/fisiologiaRESUMO
Persistent post concussion symptoms (PPCS) describe the condition when an individual experiences chronic symptoms, particularly fatigue, beyond the expected time of recovery. The aim of this study was to quantify the effect of fatigue and related ongoing symptoms on somatosensory and corticomotor pathways using reaction time (RT) testing, and single-pulse and paired-pulse transcranial magnetic stimulation (TMS). Eighty-three participants (nine female, mean age 37.9 ± 11.5 years) were divided into two groups (persistent symptoms versus asymptomatic) following self-report based upon previously published clinical symptom scores. All participants completed somatosensory and visuomotor RT testing, as well as corticomotor excitability and inhibition measurements via TMS. Participants in the persistent symptom group (n = 38) reported greater number of previous concussions (t = 2.81, p = 0.006) and significantly higher levels of fatigue and related symptoms in the asymptomatic group (n = 45; t = 11.32, p < 0.006). Somatosensory RT showed significant slowing and increased variability in the persistent symptoms group (p < 0.001), however no significant differences were observed between groups for visuomotor RTs. Transcranial magnetic stimulation revealed differences between groups for intracortical inhibition at all stimulus intensities and paired pulse measures. The results indicate that somatosensory and corticomotor systems reflect on-going fatigue. From a practical perspective, objective and simplistic measures such as somatosensory and corticomotor measures can be used in the assessment of PPCS and gauging the efficacy of post concussion rehabilitation programmes.
Assuntos
Fadiga/fisiopatologia , Córtex Motor/fisiopatologia , Síndrome Pós-Concussão/fisiopatologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Córtex Somatossensorial/fisiopatologia , Adulto , Fadiga/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome Pós-Concussão/complicações , Estimulação Magnética TranscranianaRESUMO
Improving outcomes for diffuse glioma patients requires methods that can accurately and sensitively monitor tumour activity and treatment response. Extracellular vesicles (EV) are membranous nanoparticles that can traverse the blood-brain-barrier, carrying oncogenic molecules into the circulation. Measuring clinically relevant glioma biomarkers cargoed in circulating EVs could revolutionise how glioma patients are managed. Despite their suitability for biomarker discovery, the co-isolation of highly abundant complex blood proteins has hindered comprehensive proteomic studies of circulating-EVs. Plasma-EVs isolated from pre-operative glioma grade II-IV patients (n = 41) and controls (n = 11) were sequenced by Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) and data extraction was performed by aligning against a custom 8662-protein library. Overall, 4054 proteins were measured in plasma-EVs. Differentially expressed proteins and putative circulating-EV markers were identified (adj. p-value < 0.05), including those reported in previous in-vitro and ex-vivo glioma-EV studies. Principal component analysis showed that plasma-EV protein profiles clustered according to glioma histological-subtype and grade, and plasma-EVs resampled from patients with recurrent tumour progression grouped with more aggressive glioma samples. The extensive plasma-EV proteome profiles achieved here highlight the potential for SWATH-MS to define circulating-EV biomarkers for objective blood-based measurements of glioma activity that could serve as ideal surrogate endpoints to assess tumour progression and allow more dynamic, patient-centred treatment protocols.
Assuntos
Neoplasias Encefálicas/sangue , Vesículas Extracelulares/metabolismo , Glioma/sangue , Proteômica/métodos , Adulto , Idoso , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestrutura , Estudos de Coortes , Vesículas Extracelulares/ultraestrutura , Feminino , Glioma/classificação , Glioma/patologia , Humanos , Biópsia Líquida/métodos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos , Fluxo de TrabalhoRESUMO
Extracellular vesicles (EVs) play key roles in glioblastoma (GBM; astrocytoma grade IV) biology and are novel sources of biomarkers. EVs released from GBM tumors can cross the blood-brain-barrier into the periphery carrying GBM molecules, including small non-coding RNA (sncRNA). Biomarkers cargoed in circulating EVs have shown great promise for assessing the molecular state of brain tumors in situ. Neurosurgical aspirate fluids captured during tumor resections are a rich source of GBM-EVs isolated directly from tumor microenvironments. Using density gradient ultracentrifugation, EVs were purified from cavitron ultrasonic surgical aspirate (CUSA) washings from GBM (n = 12) and astrocytoma II-III (GII-III, n = 5) surgeries. The sncRNA contents of surgically captured EVs were profiled using the Illumina® NextSeqTM 500 NGS System. Differential expression analysis identified 27 miRNA and 10 piRNA species in GBM relative to GII-III CUSA-EVs. Resolved CUSA-EV sncRNAs could discriminate serum-EV sncRNA profiles from GBM and GII-III patients and healthy controls and 14 miRNAs (including miR-486-3p and miR-106b-3p) and cancer-associated piRNAs (piR_016658, _016659, _020829 and _204090) were also significantly expressed in serum-EVs. Circulating EV markers that correlate with histological, neuroradiographic and clinical parameters will provide objective measures of tumor activity and improve the accuracy of GBM tumor surveillance.
Assuntos
Astrocitoma/química , Líquidos Corporais/química , Química Encefálica , Neoplasias Encefálicas/química , Micropartículas Derivadas de Células/química , Glioblastoma/química , Biópsia Líquida , MicroRNAs/análise , RNA Neoplásico/análise , Astrocitoma/sangue , Astrocitoma/diagnóstico , Astrocitoma/cirurgia , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Centrifugação com Gradiente de Concentração , Diagnóstico Diferencial , Glioblastoma/sangue , Glioblastoma/diagnóstico , Glioblastoma/cirurgia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/sangue , Gradação de Tumores , Procedimentos Neurocirúrgicos , Especificidade de Órgãos , RNA Neoplásico/sangue , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/sangue , RNA-Seq , Microambiente TumoralRESUMO
Glioblastoma, WHO-grade IV glioma, carries a dismal prognosis owing to its infiltrative growth and limited treatment options. Glioblastoma-derived extracellular vesicles (EVs; 30-1000 nm membranous particles) influence the microenvironment to mediate tumor aggressiveness and carry oncogenic cargo across the blood-brain barrier into the circulation. As such, EVs are biomarker reservoirs with enormous potential for assessing glioblastoma tumors in situ. Neurosurgical aspirates are rich sources of EVs, isolated directly from glioma microenvironments. EV proteomes enriched from glioblastoma (n = 15) and glioma grade II-III (n = 7) aspirates are compared and 298 differentially-abundant proteins (p-value < 0.00496) are identified using quantitative LC-MS/MS. Along with previously reported glioblastoma-associated biomarkers, levels of all eight subunits of the key molecular chaperone, T-complex protein 1 Ring complex (TRiC), are higher in glioblastoma-EVs, including CCT2, CCT3, CCT5, CCT6A, CCT7, and TCP1 (p < 0.00496). Analogous increases in TRiC transcript levels and DNA copy numbers are detected in silico; CCT6A has the greatest induction of expression and amplification in glioblastoma and shows a negative association with survival (p = 0.006). CCT6A is co-localized with EGFR at 7p11.2, with a strong tendency for co-amplification (p < 0.001). Immunohistochemistry corroborates the CCT6A proteomics measurements and indicated a potential link between EGFR and CCT6A tissue expression. Putative EV-biomarkers described here should be further assessed in peripheral blood.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Chaperonina com TCP-1/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Chaperonina com TCP-1/química , Cromatografia Líquida , Glioma/metabolismo , Glioma/patologia , Humanos , Prognóstico , Proteômica , Espectrometria de Massas em TandemRESUMO
Leptomeningitis is a rare central nervous system manifestation of rheumatoid arthritis, generally in patients with established chronic rheumatoid disease. We report a 41-year-old man without previous rheumatoid arthritis or psychiatric disorder who presented with an acute neuropsychiatric disturbance and polyarthralgia. His MR scan of brain showed asymmetric bifrontal leptomeningitis, confirmed on (18F)-fluoro-D-glucose-positron emission tomography. Other investigations showed highly positive serum and cerebrospinal fluid anti-cyclic citrullinated peptide. A leptomeningeal biopsy showed necrotising leptomeningeal inflammation with ill-defined granulomas and lymphoplasmacytic infiltrate without organisms. Prolonged high-dose corticosteroids and then rituximab resulted in recovery. Chronic leptomeningitis can present with an acute neuropsychiatric disorder. We highlight that early rheumatoid disease can, rarely, cause a chronic leptomeningitis, reversible with immunotherapy.
Assuntos
Artrite Reumatoide/complicações , Meningite/etiologia , Transtornos Mentais/etiologia , Adulto , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Humanos , Masculino , Meningite/tratamento farmacológico , Rituximab/uso terapêuticoRESUMO
Arthrogryposis multiplex congenita is defined by the presence of contractures across two or more major joints and results from reduced or absent fetal movement. Here, we present three consanguineous families affected by lethal arthrogryposis multiplex congenita. By whole-exome or targeted exome sequencing, it was shown that the probands each harbored a different homozygous mutation (one missense, one nonsense, and one frameshift mutation) in GPR126. GPR126 encodes G-protein-coupled receptor 126, which has been shown to be essential for myelination of axons in the peripheral nervous system in fish and mice. A previous study reported that Gpr126(-/-) mice have a lethal arthrogryposis phenotype. We have shown that the peripheral nerves in affected individuals from one family lack myelin basic protein, suggesting that this disease in affected individuals is due to defective myelination of the peripheral axons during fetal development. Previous work has suggested that autoproteolytic cleavage is important for activating GPR126 signaling, and our biochemical assays indicated that the missense substitution (p.Val769Glu [c.2306T>A]) impairs autoproteolytic cleavage of GPR126. Our data indicate that GPR126 is critical for myelination of peripheral nerves in humans. This study adds to the literature implicating defective axoglial function as a key cause of severe arthrogryposis multiplex congenita and suggests that GPR126 mutations should be investigated in individuals affected by this disorder.
Assuntos
Artrogripose/genética , Artrogripose/patologia , Mutação de Sentido Incorreto/genética , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Sequência de Bases , Exoma/genética , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Fibras Nervosas Mielinizadas/patologia , Linhagem , Alinhamento de Sequência , Análise de Sequência de DNAAssuntos
Encefalopatia Traumática Crônica , Futebol Americano , Humanos , Feminino , Austrália , EncéfaloRESUMO
There have been rapid and significant advances in diagnostic and predictive molecular techniques in recent years with profound impact on patient care. In situ hybridization (ISH) studies have become well entrenched in surgical pathology practice and their role in the evaluation of HER2 in breast carcinoma and their diagnostic utility in soft tissue pathology are well known. Fluorescent ISH is being increasingly used in other sites such as the head and neck and the gynecologic tract. Like most tests in surgical pathology, ISH studies require good quality tissue, correlation with clinical and histopathologic findings, and adherence to guidelines for optimal assay performance and interpretation. Although ISH studies are largely performed in tertiary centers, the tissue is often processed by a variety of laboratories and the referring pathologists are required to discuss the need, relevance, and significance of these tests and the results with their clinical colleagues. Here we review the predictive and diagnostic utility of fluorescent ISH studies in a variety of organ systems, the preanalytical factors that may affect the results, and the pitfalls in the interpretation that all practicing surgical pathologists should be aware of.
Assuntos
Biomarcadores Tumorais/análise , Hibridização in Situ Fluorescente/métodos , Neoplasias/diagnóstico , Patologia Cirúrgica/métodos , HumanosRESUMO
The classification of central nervous system tumours has more recently been shaped by a focus on molecular pathology rather than histopathology. We re-classified 82 glial tumours according to the molecular-genetic criteria of the 2016 revision of the World Health Organization (WHO) Classification of Tumours of the Central Nervous System. Initial diagnoses and grading were based on the morphological criteria of the 2007 WHO scheme. Because of the impression of an oligodendroglial component on initial histological assessment, each tumour was tested for co-deletion of chromosomes 1p and 19q and mutations of isocitrate dehydrogenase (IDH-1 and 2) genes. Additionally, expression of proteins encoded by alpha-thalassemia X-linked mental retardation (ATRX) and TP53 genes was assessed by immunohistochemistry. We found that all but two tumours could be assigned to a specific category in the 2016 revision. The most common change in diagnosis was from oligoastrocytoma to specifically astrocytoma or oligodendroglioma. Analysis of progression free survival (PFS) for WHO grade II and III tumours showed that the objective criteria of the 2016 revision separated diffuse gliomas into three distinct molecular categories: chromosome 1p/19q co-deleted/IDH mutant, intact 1p/19q/IDH mutant and IDH wild type. No significant difference in PFS was found when comparing IDH mutant grade II and III tumours suggesting that IDH status is more informative than tumour grade. The segregation into distinct molecular sub-types that is achieved by the 2016 revision provides an objective evidence base for managing patients with grade II and III diffuse gliomas based on prognosis.