Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 208(2): 203-211, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35017209

RESUMO

The ongoing arms race between hosts and microbes has fueled the evolution of novel strategies for diversifying the molecules involved in immune responses. Characterization of immune systems from an ever-broadening phylogenetic range of organisms reveals that there are many mechanisms by which this diversity can be generated and maintained. Diversification strategies operate at the level of populations, genomes, genes, and even individual transcripts. Lineage-specific innovations have been cataloged within the immune systems of both invertebrates and vertebrates. Furthermore, somatic diversification of immune receptor genes has now been described in jawless vertebrates and some invertebrate species. In addition to pathogen detection, immunological diversity plays important roles in several distinct allorecognition systems. In this Brief Review, we highlight some of the evolutionary innovations employed by a variety of metazoan species to generate the molecular diversity required to detect a vast array of molecules in the context of both immune response and self/nonself-recognition.


Assuntos
Imunidade Adaptativa/genética , Imunidade Celular/genética , Invertebrados/imunologia , Receptores Imunológicos/genética , Vertebrados/imunologia , Imunidade Adaptativa/imunologia , Animais , Evolução Biológica , Evolução Molecular , Variação Genética/genética , Imunidade Celular/imunologia , Invertebrados/genética , Receptores Imunológicos/imunologia , Vertebrados/genética
2.
PLoS Biol ; 18(7): e3000811, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32735558

RESUMO

One of the earliest and most prevalent barriers to successful reproduction is polyspermy, or fertilization of an egg by multiple sperm. To prevent these supernumerary fertilizations, eggs have evolved multiple mechanisms. It has recently been proposed that zinc released by mammalian eggs at fertilization may block additional sperm from entering. Here, we demonstrate that eggs from amphibia and teleost fish also release zinc. Using Xenopus laevis as a model, we document that zinc reversibly blocks fertilization. Finally, we demonstrate that extracellular zinc similarly disrupts early embryonic development in eggs from diverse phyla, including Cnidaria, Echinodermata, and Chordata. Our study reveals that a fundamental strategy protecting human eggs from fertilization by multiple sperm may have evolved more than 650 million years ago.


Assuntos
Fertilização , Oócitos/metabolismo , Zinco/metabolismo , Ambystoma mexicanum , Animais , Feminino , Hidrozoários , Masculino , Strongylocentrotus purpuratus , Xenopus laevis , Peixe-Zebra
3.
Nature ; 510(7503): 109-14, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24847885

RESUMO

The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.


Assuntos
Ctenóforos/genética , Evolução Molecular , Genoma/genética , Sistema Nervoso , Animais , Ctenóforos/classificação , Ctenóforos/imunologia , Ctenóforos/fisiologia , Genes Controladores do Desenvolvimento , Genes Homeobox , Mesoderma/metabolismo , Metabolômica , MicroRNAs , Dados de Sequência Molecular , Músculos/fisiologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Neurotransmissores , Filogenia , Transcriptoma/genética
4.
Cell Tissue Res ; 377(3): 469-474, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31463705

RESUMO

The embryo of the purple sea urchin has been a fruitful model for the study of developmental gene regulatory networks. For similar reasons, the feeding sea urchin larva provides a gene regulatory model to investigate immune interactions at the gut epithelium. Here we describe what is known of the gut structure and immune cells of the sea urchin larva, and the cellular and gene expression response of the larva to gut-associated immune challenge. As a focused example of how the sea urchin larva can be compared with vertebrate systems, we discuss the expression and function of the IL-17 signalling system in the course of the larval immune response.


Assuntos
Sistema Digestório/imunologia , Epitélio/imunologia , Interleucina-17/imunologia , Larva/imunologia , Strongylocentrotus purpuratus/imunologia , Animais , Regulação da Expressão Gênica/imunologia
5.
Dev Biol ; 416(1): 149-161, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27265865

RESUMO

E-proteins are basic helix-loop-helix (bHLH) transcription factors with essential roles in animal development. In mammals, these are encoded by three loci: E2-2 (ITF-2/ME2/SEF2/TCF4), E2A (TCF3), and HEB (ME1/REB/TCF12). The HEB and E2-2 paralogs are expressed as alternative (Alt) isoforms with distinct N-terminal sequences encoded by unique exons under separate regulatory control. Expression of these alternative transcripts is restricted relative to the longer (Can) forms, suggesting distinct regulatory roles, although the functions of the Alt proteins remain poorly understood. Here, we characterize the single sea urchin E-protein ortholog (SpE-protein). The organization of the SpE-protein gene closely resembles that of the extended HEB/E2-2 vertebrate loci, including a transcript that initiates at a homologous alternative transcription start site (SpE-Alt). The existence of an Alt form in the sea urchin indicates that this feature predates the emergence of the vertebrates. We present additional evidence indicating that this transcript was present in the common bilaterian ancestor. In contrast to the widely expressed canonical form (SpE-Can), SpE-Alt expression is tightly restricted. SpE-Alt is expressed in two phases: first in aboral non-skeletogenic mesenchyme (NSM) cells and then in oral NSM cells preceding their differentiation and ingression into the blastocoel. Derivatives of these cells mediate immune response in the larval stage. Inhibition of SpE-Alt activity interferes with these events. Notably, although the two isoforms are initially co-expressed, as these cells differentiate, SpE-Can is excluded from the SpE-Alt(+) cell population. This mutually exclusive expression is dependent on SpE-Alt function, which reveals a previously undescribed negative regulatory linkage between the two E-protein forms. Collectively, these findings reorient our understanding of the evolution of this transcription factor family and highlight fundamental properties of E-protein biology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Leucopoese , Strongylocentrotus purpuratus/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Blástula/citologia , Blástula/embriologia , Sequência Conservada , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Isoformas de Proteínas , Células-Tronco , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia
8.
Immunol Cell Biol ; 94(9): 861-874, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27192936

RESUMO

The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunidade Celular , Larva/imunologia , Larva/microbiologia , Strongylocentrotus purpuratus/imunologia , Strongylocentrotus purpuratus/microbiologia , Animais , Comunicação Celular/genética , Epitélio/imunologia , Regulação da Expressão Gênica , Imunidade Celular/genética , Larva/citologia , Larva/genética , Modelos Imunológicos , Água do Mar , Strongylocentrotus purpuratus/citologia , Strongylocentrotus purpuratus/genética , Transcrição Gênica
9.
Semin Immunol ; 22(1): 39-47, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20022762

RESUMO

Detailed understanding of animal immunity derives almost entirely from investigations of vertebrates, with a smaller, but significant, contribution from studies in fruit flies. This limited phylogenetic scope has artificially polarized the larger view of animal immunity toward the complex adaptive immune systems of vertebrates on the one hand and systems driven by relatively small, stable families of innate receptors of insects on the other. In the past few years analyses of a series of invertebrate deuterostome genome sequences, including those from echinoderms and cephalochordates, sharply modify this view. These findings have far-reaching implications for characterizing the potential range of animal immunity and for inferring the evolutionary pathway that led to vertebrate immune systems.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Filogenia , Receptores Imunológicos/imunologia , Animais , Evolução Molecular , Humanos
10.
Cell Rep ; 43(4): 114021, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38564335

RESUMO

The red sea urchin (Mesocentrotus franciscanus) is one of the Earth's longest-living animals, reported to live more than 100 years with indeterminate growth, life-long reproduction, and no increase in mortality rate with age. To understand the genetic underpinnings of longevity and negligible aging, we constructed a chromosome-level assembly of the red sea urchin genome and compared it to that of short-lived sea urchin species. Genome-wide syntenic alignments identified chromosome rearrangements that distinguish short- and long-lived species. Expanded gene families in long-lived species play a role in innate immunity, sensory nervous system, and genome stability. An integrated network of genes under positive selection in the red sea urchin was involved in genomic regulation, mRNA fidelity, protein homeostasis, and mitochondrial function. Our results implicated known longevity genes in sea urchin longevity but also revealed distinct molecular signatures that may promote long-term maintenance of tissue homeostasis, disease resistance, and negligible aging.


Assuntos
Envelhecimento , Genoma , Longevidade , Ouriços-do-Mar , Animais , Longevidade/genética , Envelhecimento/genética , Ouriços-do-Mar/genética , Genômica/métodos
11.
Methods Mol Biol ; 2421: 151-169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34870818

RESUMO

Genome sequences are quickly becoming available from a variety of organisms, providing researchers with an abundance of previously inaccessible information and an important source of insight into immune mechanisms. There are a variety of methods to accurately characterize genes from new genome sequences, but immune receptors pose special challenges for these techniques. Immune receptors, particularly those that directly recognize pathogens, often diverge rapidly among species and are commonly found in large, complex multigene families. Because of these characteristics, immune receptors tend to be overlooked or misannotated in large-scale genomic surveys. We describe here a strategy to characterize homologs of immune receptors and to identify putative receptors from newly assembled genome or transcriptome sequences. The description of these protocols is aimed at a typical immunologist and does not rely on substantial a priori knowledge of bioinformatics. The approach is based on using low-stringency sequence searches to identify divergent homologs. For receptors with multiple domains, the intersection of low-stringency searches can be used to identify divergent receptor sequences with high confidence. For multigene families, these predictions can be refined using sequence conservation among gene family paralogs. Assembled genome sequences serve as a critical foundation for subsequent functional characterization and remove long-standing barriers in understanding the evolution of immune recognition systems.


Assuntos
Biologia Computacional , Genoma , Genômica , Humanos , Família Multigênica , Filogenia , Receptores Imunológicos
13.
Elife ; 102021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33900197

RESUMO

Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.


Assuntos
Sistema Imunitário/fisiologia , Sistema Nervoso/imunologia , Neuroimunomodulação , Animais , Evolução Biológica , Filogenia
14.
Biology (Basel) ; 10(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571743

RESUMO

The purple sea urchin (Strongylocentrotus purpuratus) is a marine invertebrate of the class Echinoidea that serves as an important research model for developmental biology, cell biology, and immunology, as well as for understanding regenerative responses and ageing. Peptidylarginine deiminases (PADs) are calcium-dependent enzymes that mediate post-translational protein deimination/citrullination. These alterations affect protein function and may also play roles in protein moonlighting. Extracellular vesicles (EVs) are membrane-bound vesicles that are released from cells as a means of cellular communication. Their cargo includes a range of protein and RNA molecules. EVs can be isolated from many body fluids and are therefore used as biomarkers in physiological and pathological responses. This study assessed EVs present in the coelomic fluid of the purple sea urchin (Strongylocentrotus purpuratus), and identified both total protein cargo as well as the deiminated protein cargo. Deiminated proteins in coelomic fluid EVs were compared with the total deiminated proteins identified in coelomic fluid to assess putative differences in deiminated protein targets. Functional protein network analysis for deiminated proteins revealed pathways for immune, metabolic, and gene regulatory functions within both total coelomic fluid and EVs. Key KEGG and GO pathways for total EV protein cargo furthermore showed some overlap with deimination-enriched pathways. The findings presented in this study add to current understanding of how post-translational deimination may shape immunity across the phylogeny tree, including possibly via PAD activity from microbiota symbionts. Furthermore, this study provides a platform for research on EVs as biomarkers in sea urchin models.

15.
Database (Oxford) ; 20212021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34386815

RESUMO

Echinoderm embryos and larvae are prominent experimental model systems for studying developmental mechanisms. High-quality, assembled, annotated genome sequences are now available for several echinoderm species, including representatives from most classes. The increased availability of these data necessitates the development of a nomenclature that assigns universally interpretable gene symbols to echinoderm genes to facilitate cross-species comparisons of gene functions, both within echinoderms and across other phyla. This paper describes the implementation of an improved set of echinoderm gene nomenclature guidelines that both communicates meaningful orthology information in protein-coding gene symbols and names and establishes continuity with nomenclatures developed for major vertebrate model organisms, including humans. Differences between the echinoderm gene nomenclature guidelines and vertebrate guidelines are examined and explained. This nomenclature incorporates novel solutions to allow for several types of orthologous relationships, including the single echinoderm genes with multiple vertebrate co-orthologs that result from whole-genome-duplication events. The current version of the Echinoderm Gene Nomenclature Guidelines can be found at https://www.echinobase.org/gene/static/geneNomenclature.jsp Database URL https://www.echinobase.org/.


Assuntos
Equinodermos , Genoma , Animais , Bases de Dados Factuais , Equinodermos/genética , Humanos , Vertebrados/genética
16.
Elife ; 102021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33591272

RESUMO

The mitochondrial carrier family protein SLC25A3 transports both copper and phosphate in mammals, yet in Saccharomyces cerevisiae the transport of these substrates is partitioned across two paralogs: PIC2 and MIR1. To understand the ancestral state of copper and phosphate transport in mitochondria, we explored the evolutionary relationships of PIC2 and MIR1 orthologs across the eukaryotic tree of life. Phylogenetic analyses revealed that PIC2-like and MIR1-like orthologs are present in all major eukaryotic supergroups, indicating an ancient gene duplication created these paralogs. To link this phylogenetic signal to protein function, we used structural modeling and site-directed mutagenesis to identify residues involved in copper and phosphate transport. Based on these analyses, we generated an L175A variant of mouse SLC25A3 that retains the ability to transport copper but not phosphate. This work highlights the utility of using an evolutionary framework to uncover amino acids involved in substrate recognition by mitochondrial carrier family proteins.


Assuntos
Evolução Biológica , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Transporte de Cobre/genética , Proteínas de Transporte de Cobre/metabolismo , Eucariotos , Camundongos , Mitocôndrias , Proteínas Mitocondriais/metabolismo , Mutagênese Sítio-Dirigida , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
BMC Genomics ; 11: 575, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20955585

RESUMO

BACKGROUND: The immune system of the purple sea urchin, Strongylocentrotus purpuratus, is complex and sophisticated. An important component of sea urchin immunity is the Sp185/333 gene family, which is significantly upregulated in immunologically challenged animals. The Sp185/333 genes are less than 2 kb with two exons and are members of a large diverse family composed of greater than 40 genes. The S. purpuratus genome assembly, however, contains only six Sp185/333 genes. This underrepresentation could be due to the difficulties that large gene families present in shotgun assembly, where multiple similar genes can be collapsed into a single consensus gene. RESULTS: To understand the genomic organization of the Sp185/333 gene family, a BAC insert containing Sp185/333 genes was assembled, with careful attention to avoiding artifacts resulting from collapse or artificial duplication/expansion of very similar genes. Twelve candidate BAC assemblies were generated with varying parameters and the optimal assembly was identified by PCR, restriction digests, and subclone sequencing. The validated assembly contained six Sp185/333 genes that were clustered in a 34 kb region at one end of the BAC with five of the six genes tightly clustered within 20 kb. The Sp185/333 genes in this cluster were no more similar to each other than to previously sequenced Sp185/333 genes isolated from three different animals. This was unexpected given their proximity and putative effects of gene homogenization in closely linked, similar genes. All six genes displayed significant similarity including both 5' and 3' flanking regions, which were bounded by microsatellites. Three of the Sp185/333 genes and their flanking regions were tandemly duplicated such that each repeated segment consisted of a gene plus 0.7 kb 5' and 2.4 kb 3' of the gene (4.5 kb total). Both edges of the segmental duplications were bounded by different microsatellites. CONCLUSIONS: The high sequence similarity of the Sp185/333 genes and flanking regions, suggests that the microsatellites may promote genomic instability and are involved with gene duplication and/or gene conversion and the extraordinary sequence diversity of this family.


Assuntos
Variação Genética , Repetições de Microssatélites/genética , Família Multigênica/genética , Strongylocentrotus purpuratus/genética , Animais , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , DNA Intergênico/genética , Duplicação Gênica/genética , Genoma/genética , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Duplicações Segmentares Genômicas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
18.
J Immunol ; 181(12): 8585-94, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19050278

RESUMO

The 185/333 gene family is highly expressed in two subsets of immune cells in the purple sea urchin in response to immune challenges. The genes encode a surprisingly diverse set of transcripts, which is a function of the variable presence or absence of blocks of shared sequences, known as elements that generate element patterns. Diversity is also the result of a significant level of point mutations. Together, variable element patterns and single nucleotide polymorphisms result in many unique transcripts. The 185/333 genes only have two exons, with the variable element patterns encoded entirely within the second exon. The diversity of the gene family may be the result of frequent recombination among the 185/333 genes that generates a mosaic distribution of element sequences among the genes. A comparative analysis of the sequences for the genes and messages from individual sea urchins indicates that these two sequence sets have largely different nucleotide sequences and appear to use different element patterns. Furthermore, the nucleotide substitution patterns between genes and messages reveal a strong bias toward transitions, particularly cytidine to uridine conversions. These data are consistent with cytidine deaminase activity and may represent a novel form of immunological diversification in an invertebrate immune response system.


Assuntos
Sequência de Bases , Variação Genética/imunologia , Família Multigênica/imunologia , Processamento Pós-Transcricional do RNA/imunologia , RNA Mensageiro/genética , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/imunologia , Animais , DNA Complementar/química , DNA Complementar/genética , Dados de Sequência Molecular , Edição de RNA/imunologia , RNA Mensageiro/isolamento & purificação , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência
19.
Adv Exp Med Biol ; 708: 260-301, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21528703

RESUMO

A survey for immune genes in the genome for the purple sea urchin has shown that the immune system is complex and sophisticated. By inference, immune responses of all echinoderms maybe similar. The immune system is mediated by several types of coelomocytes that are also useful as sensors of environmental stresses. There are a number of large gene families in the purple sea urchin genome that function in immunity and of which at least one appears to employ novel approaches for sequence diversification. Echinoderms have a simpler complement system, a large set of lectin genes and a number of antimicrobial peptides. Profiling the immune genes expressed by coelomocytes and the proteins in the coelomic fluid provide detailed information about immune functions in the sea urchin. The importance of echinoderms in maintaining marine ecosystem stability and the disastrous effects of their removal due to disease will require future collaborations between ecologists and immunologists working towards understanding and preserving marine habitats.


Assuntos
Ouriços-do-Mar/imunologia , Animais , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/imunologia , Sistema Imunitário/imunologia , Lectinas/genética , Lectinas/imunologia , Ouriços-do-Mar/genética
20.
BMC Genomics ; 10: 318, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19607703

RESUMO

BACKGROUND: As the amount of genome sequencing data grows, so does the problem of computational gene identification, and in particular, the splicing signals that flank exon borders. Traditional methods for identifying splicing signals have been created and optimized using sequences from model organisms, mostly vertebrate and yeast species. However, as genome sequencing extends across the animal kingdom and includes various invertebrate species, the need for mechanisms to recognize splice signals in these organisms increases as well. With that aim in mind, we generated a model for identifying donor and acceptor splice sites that was optimized using sequences from the purple sea urchin, Strongylocentrotus purpuratus. This model was then used to assess the possibility of alternative or cryptic splicing within the highly variable immune response gene family known as 185/333. RESULTS: A donor splice site model was generated from S. purpuratus sequences that incorporates non-adjacent dependences among positions within the 9 nt splice signal and uses position weight matrices to determine the probability that the site is used for splicing. The Purpuratus model was shown to predict splice signals better than a similar model created from vertebrate sequences. Although the Purpuratus model was able to correctly predict the true splice sites within the 185/333 genes, no evidence for alternative or trans-gene splicing was observed. CONCLUSION: The data presented herein describe the first published analyses of echinoderm splice sites and suggest that the previous methods of identifying splice signals that are based largely on vertebrate sequences may be insufficient. Furthermore, alternative or trans-gene splicing does not appear to be acting as a diversification mechanism in the 185/333 gene family.


Assuntos
Modelos Genéticos , Sítios de Splice de RNA , Splicing de RNA , RNA Mensageiro/genética , Ouriços-do-Mar/genética , Processamento Alternativo , Animais , Biologia Computacional/métodos , Genômica/métodos , Família Multigênica , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa