RESUMO
Trypanosomatids, such as the sleeping sickness parasite Trypanosoma brucei, contain a â¼ 20S RNA-editing complex, also called the editosome, which is required for U-insertion/deletion editing of mitochondrial mRNAs. The editosome contains a core of 12 proteins including the large interaction protein A1, the small interaction protein A6, and the editing RNA ligase L2. Using biochemical and structural data, we identified distinct domains of T. brucei A1 which specifically recognize A6 and L2. We provide evidence that an N-terminal domain of A1 interacts with the C-terminal domain of L2. The C-terminal domain of A1 appears to be required for the interaction with A6 and also plays a key role in RNA binding by the RNA-editing ligase L2 in trans. Three crystal structures of the C-terminal domain of A1 have been elucidated, each in complex with a nanobody as a crystallization chaperone. These structures permitted the identification of putative dsRNA recognition sites. Mutational analysis of conserved residues of the C-terminal domain identified Arg703, Arg731 and Arg734 as key requirements for RNA binding. The data show that the editing RNA ligase activity is modulated by a novel mechanism, i.e. by the trans-acting RNA binding C-terminal domain of A1.
Assuntos
Carbono-Oxigênio Ligases/química , Proteínas Mitocondriais/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei , Sítios de Ligação , Carbono-Oxigênio Ligases/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/metabolismo , Edição de RNA , RNA de Cadeia Dupla/metabolismo , Trypanosoma brucei brucei/genéticaRESUMO
Glutathione is a nearly ubiquitous, low-molecular-mass thiol and antioxidant, but it is conspicuously absent from most Gram-positive bacteria. We identify here the structure of bacillithiol, a newly described and abundant thiol produced by Bacillus species, Staphylococcus aureus and Deinococcus radiodurans. Bacillithiol is the alpha-anomeric glycoside of L-cysteinyl-D-glucosamine with L-malic acid and most probably functions as an antioxidant. Bacillithiol, like the structurally similar mycothiol, may serve as a substitute for glutathione.
Assuntos
Antioxidantes/isolamento & purificação , Cisteína/análogos & derivados , Deinococcus/metabolismo , Glucosamina/análogos & derivados , Staphylococcus aureus/metabolismo , Compostos de Sulfidrila/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Cisteína/química , Cisteína/isolamento & purificação , Cisteína/farmacologia , Glucosamina/química , Glucosamina/isolamento & purificação , Glucosamina/farmacologia , Glutationa/química , Glutationa/farmacologia , Modelos Moleculares , Estrutura Molecular , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologiaRESUMO
BACKGROUND: T cells that have been modified to express a CD19-specific chimeric antigen receptor (CAR) have antitumor activity in B cell malignancies; however, identification of the factors that determine toxicity and efficacy of these T cells has been challenging in prior studies in which phenotypically heterogeneous CAR-T cell products were prepared from unselected T cells. METHODS: We conducted a clinical trial to evaluate CD19 CAR-T cells that were manufactured from defined CD4+ and CD8+ T cell subsets and administered in a defined CD4+:CD8+ composition to adults with B cell acute lymphoblastic leukemia after lymphodepletion chemotherapy. RESULTS: The defined composition product was remarkably potent, as 27 of 29 patients (93%) achieved BM remission, as determined by flow cytometry. We established that high CAR-T cell doses and tumor burden increase the risks of severe cytokine release syndrome and neurotoxicity. Moreover, we identified serum biomarkers that allow testing of early intervention strategies in patients at the highest risk of toxicity. Risk-stratified CAR-T cell dosing based on BM disease burden decreased toxicity. CD8+ T cell-mediated anti-CAR transgene product immune responses developed after CAR-T cell infusion in some patients, limited CAR-T cell persistence, and increased relapse risk. Addition of fludarabine to the lymphodepletion regimen improved CAR-T cell persistence and disease-free survival. CONCLUSION: Immunotherapy with a CAR-T cell product of defined composition enabled identification of factors that correlated with CAR-T cell expansion, persistence, and toxicity and facilitated design of lymphodepletion and CAR-T cell dosing strategies that mitigated toxicity and improved disease-free survival. TRIAL REGISTRATION: ClinicalTrials.gov NCT01865617. FUNDING: R01-CA136551; Life Science Development Fund; Juno Therapeutics; Bezos Family Foundation.