Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
New Phytol ; 242(2): 479-492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418430

RESUMO

Biophysicochemical rhizosheath properties play a vital role in plant drought adaptation. However, their integration into the framework of plant drought response is hampered by incomplete mechanistic understanding of their drought responsiveness and unknown linkage to intraspecific plant-soil drought reactions. Thirty-eight Zea mays varieties were grown under well-watered and drought conditions to assess the drought responsiveness of rhizosheath properties, such as soil aggregation, rhizosheath mass, net-rhizodeposition, and soil organic carbon distribution. Additionally, explanatory traits, including functional plant trait adaptations and changes in soil enzyme activities, were measured. Drought restricted soil structure formation in the rhizosheath and shifted plant-carbon from litter-derived organic matter in macroaggregates to microbially processed compounds in microaggregates. Variety-specific functional trait modifications determined variations in rhizosheath drought responsiveness. Drought responses of the plant-soil system ranged among varieties from maintaining plant-microbial interactions in the rhizosheath through accumulation of rhizodeposits, to preserving rhizosheath soil structure while increasing soil exploration through enhanced root elongation. Drought-induced alterations at the root-soil interface may hold crucial implications for ecosystem resilience in a changing climate. Our findings highlight that rhizosheath soil properties are an intrinsic component of plant drought response, emphasizing the need for a holistic concept of plant-soil systems in future research on plant drought adaptation.


Assuntos
Ecossistema , Solo , Solo/química , Secas , Carbono/análise , Plantas , Raízes de Plantas/fisiologia
2.
Glob Chang Biol ; 28(6): 2095-2110, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927319

RESUMO

Under ongoing global climate change, drought periods are predicted to increase in frequency and intensity in the future. Under these circumstances, it is crucial for tree's survival to recover their restricted functionalities quickly after drought release. To elucidate the recovery of carbon (C) transport rates in c. 70-year-old Norway spruce (Picea abies [L.] KARST.) after 5 years of recurrent summer droughts, we conducted a continuous whole-tree 13 C labeling experiment in parallel with watering. We determined the arrival time of current photoassimilates in major C sinks by tracing the 13 C label in stem and soil CO2 efflux, and tips of living fine roots. In the first week after watering, aboveground C transport rates (CTR) from crown to trunk base were still 50% lower in previously drought-stressed trees (0.16 ± 0.01 m h-1 ) compared to controls (0.30 ± 0.06 m h-1 ). Conversely, CTR below ground, that is, from the trunk base to soil CO2 efflux were already similar between treatments (c. 0.03 m h-1 ). Two weeks after watering, aboveground C transport of previously drought-stressed trees recovered to the level of the controls. Furthermore, regrowth of water-absorbing fine roots upon watering was supported by faster incorporation of 13 C label in previously drought-stressed (within 12 ± 10 h upon arrival at trunk base) compared to control trees (73 ± 10 h). Thus, the whole-tree C transport system from the crown to soil CO2 efflux fully recovered within 2 weeks after drought release, and hence showed high resilience to recurrent summer droughts in mature Norway spruce forests. This high resilience of the C transport system is an important prerequisite for the recovery of other tree functionalities and productivity.


Assuntos
Picea , Carbono/metabolismo , Secas , Noruega , Árvores/metabolismo
3.
Glob Chang Biol ; 28(23): 6889-6905, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36039835

RESUMO

After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew ) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13 C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew to growth and CO2 efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2 efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew , stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity.


Assuntos
Picea , Secas , Carbono , Dióxido de Carbono , Árvores , Água
4.
Glob Chang Biol ; 28(22): 6696-6710, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36056462

RESUMO

Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.


Assuntos
Micorrizas , Solo , Animais , Biodiversidade , Ecossistema , Florestas , Fungos , Humanos , Plantas , Microbiologia do Solo
5.
New Phytol ; 232(2): 818-834, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34240433

RESUMO

Climate change is increasing insect pressure and forcing plants to adapt. Although chemotypic differentiation and phenotypic plasticity in spatially separated tree populations are known for decades, understanding their importance in herbivory resistance across forests remains challenging. We studied four oak forest stands in Germany using nontarget metabolomics, elemental analysis, and chemometrics and mapped the leaf metabolome of herbivore-resistant (T-) and herbivore-susceptible (S-) European oaks (Quercus robur) to Tortrix viridana, an oak pest that causes severe forest defoliation. Among the detected metabolites, we identified reliable metabolic biomarkers to distinguish S- and T-oak trees. Chemotypic differentiation resulted in metabolic shifts of primary and secondary leaf metabolism. Across forests, T-oaks allocate resources towards constitutive chemical defense enriched of polyphenolic compounds, e.g. the flavonoids kaempferol, kaempferol and quercetin glucosides, while S-oaks towards growth-promoting substances such as carbohydrates and amino-acid derivatives. This extensive work across natural forests shows that oaks' resistance and susceptibility to herbivory are linked to growth-defense trade-offs of leaf metabolism. The discovery of biomarkers and the developed predictive model pave the way to understand Quercus robur's susceptibility to herbivore attack and to support forest management, contributing to the preservation of oak forests in Europe.


Assuntos
Quercus , Animais , Ecótipo , Florestas , Herbivoria , Árvores
6.
Glob Chang Biol ; 26(3): 1908-1925, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957145

RESUMO

Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature-dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13 CO2 -labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil-plant-atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13 C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%-44% (Salix) and 60%-68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%-58% (Salix) and 87%-95% (Betula). Analyses of above- and belowground 12/13 C showed shifts of C allocation in the plant-soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.


Assuntos
Aquecimento Global , Compostos Orgânicos Voláteis , Regiões Árticas , Ecossistema , Tundra
7.
J Exp Bot ; 70(17): 4521-4537, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31245808

RESUMO

To investigate the effect of high atmospheric NO concentrations on crop plants and the role of phytoglobins under these conditions, we performed a long-term study on barley 'Golden Promise' wild type (WT), class 1 phytoglobin knockdown (HvPgb1.1-) and class 1 phytoglobin overexpression (HvPgb1.1+) lines. Plants were cultivated with nitrogen-free nutrient solution during the entire growth period and were fumigated with different NO concentration (ambient, 800, 1500, and 3000 ppb). Analysis of fresh weight, stem number, chlorophyll content, and effective quantum yield of PSII showed that NO fumigation promoted plant growth and tillering significantly in the HvPgb1.1+ line. After 80 d of NO fumigation, dry matter weight, spikes number, kernel number, and plant kernel weight were significantly increased in HvPgb1.1+ plants with increasing NO concentration. In contrast, yield decreased in WT and HvPgb1.1- plants the higher the NO level. Application of atmospheric 15NO and 15NO2 demonstrated NO specificity of phytoglobins. 15N from 15NO could be detected in RNA, DNA, and proteins of barley leaves and the 15N levels were significantly higher in HvPgb1.1+ plants in comparison with HvPgb1.1- and WT plants. Our results demonstrate that overexpression of phytoglobins allows plants to more efficiently use atmospheric NO as N source.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/genética , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Hordeum/metabolismo , Proteínas de Plantas/metabolismo
8.
Plant Cell Environ ; 40(1): 36-50, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27245884

RESUMO

Nitric oxide (NO) is an important signalling molecule that is involved in many different physiological processes in plants. Here, we report about a NO-fixing mechanism in Arabidopsis, which allows the fixation of atmospheric NO into nitrogen metabolism. We fumigated Arabidopsis plants cultivated in soil or as hydroponic cultures during the whole growing period with up to 3 ppmv of NO gas. Transcriptomic, proteomic and metabolomic analyses were used to identify non-symbiotic haemoglobin proteins as key components of the NO-fixing process. Overexpressing non-symbiotic haemoglobin 1 or 2 genes resulted in fourfold higher nitrate levels in these plants compared with NO-treated wild-type. Correspondingly, rosettes size and weight, vegetative shoot thickness and seed yield were 25, 40, 30, and 50% higher, respectively, than in wild-type plants. Fumigation with 250 ppbv 15 NO confirmed the importance of non-symbiotic haemoglobin 1 and 2 for the NO-fixation pathway, and we calculated a daily uptake for non-symbiotic haemoglobin 2 overexpressing plants of 250 mg N/kg dry weight. This mechanism is probably important under conditions with limited N supply via the soil. Moreover, the plant-based NO uptake lowers the concentration of insanitary atmospheric NOx, and in this context, NO-fixation can be beneficial to air quality.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hemoglobinas/metabolismo , Óxido Nítrico/metabolismo , Nitrogênio/farmacologia , Simbiose , Amônia/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fumigação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitratos/metabolismo , Óxido Nítrico/farmacologia , Nitritos/metabolismo , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Propanóis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , S-Nitrosotióis/metabolismo
9.
Microb Ecol ; 74(4): 765-770, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492990

RESUMO

More than 50% of all anthropogenic N2O emissions come from the soil. Drained Histosols that are used for agricultural purposes are particularly potent sources of denitrification due to higher stocks of organic matter and fertiliser application. However, conditions that favour denitrification can vary considerably across a field and change significantly throughout the year. Spatial and temporal denitrifier dynamics were assessed in a drained, intensely managed Histosol by focusing on the genetic nitrite and N2O reduction potential derived from the abundance of nirK, nirS and nosZ genes. These data were correlated with soil properties at two different points in time in 2013. N2O emissions were measured every 2 weeks over three vegetation periods (2012-2014). Very low N2O emission rates were measured throughout the entire period of investigation in accordance with the geostatistical data that revealed an abundance of microbes carrying the N2O reductase gene nosZ. This, along with neutral soil pH values, is indicative of high microbial denitrification potential. While the distribution of the microbial communities was strongly influenced by total organic carbon and nitrogen pools in March, the spatial distribution pattern was not related to the distribution of soil properties in October, when higher nutrient availability was observed. Different nitrite reducer groups prevailed in spring and autumn. While nirS, followed by nosZ and nirK, was most abundant in March, the latter was the dominant nitrite reductase in October.


Assuntos
Bactérias/metabolismo , Desnitrificação , Genes Bacterianos , Óxido Nitroso/metabolismo , Microbiologia do Solo , Agricultura , Bactérias/genética , Alemanha , Estações do Ano
10.
Ecol Lett ; 18(1): 96-107, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25354810

RESUMO

Ectomycorrhizal (EcM)-mediated nitrogen (N) acquisition is one main strategy used by terrestrial plants to facilitate growth. Measurements of natural abundance nitrogen isotope ratios (denoted as δ(15)N relative to a standard) increasingly serve as integrative proxies for mycorrhiza-mediated N acquisition due to biological fractionation processes that alter (15)N:(14)N ratios. Current understanding of these processes is based on studies from high-latitude ecosystems where plant productivity is largely limited by N availability. Much less is known about the cause and utility of ecosystem δ(15)N patterns in the tropics. Using structural equation models, model selection and isotope mass balance we assessed relationships among co-occurring soil, mycorrhizal plants and fungal N pools measured from 40 high- and 9 low-latitude ecosystems. At low latitudes (15)N-enrichment caused ecosystem components to significantly deviate from those in higher latitudes. Collectively, δ(15)N patterns suggested reduced N-dependency and unique sources of EcM (15)N-enrichment under conditions of high N availability typical of the tropics. Understanding the role of mycorrhizae in global N cycles will require reevaluation of high-latitude perspectives on fractionation sources that structure ecosystem δ(15)N patterns, as well as better integration of EcM function with biogeochemical theories pertaining to climate-nutrient cycling relationships.


Assuntos
Micorrizas/fisiologia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Plantas/metabolismo , Microbiologia do Solo , Clima , Ecossistema , Modelos Estatísticos , Isótopos de Nitrogênio/análise , Solo/química
11.
New Phytol ; 205(3): 1320-1329, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25345872

RESUMO

Carnivorous Dionaea muscipula operates active snap traps for nutrient acquisition from prey; so what is the role of D. muscipula's reduced root system? We studied the capacity for nitrogen (N) acquisition via traps, and its effect on plant allometry; the capacity of roots to absorb NO3(-), NH4(+) and glutamine from the soil solution; and the fate and interaction of foliar- and root-acquired N. Feeding D. muscipula snap traps with insects had little effect on the root : shoot ratio, but promoted petiole relative to trap growth. Large amounts of NH4(+) and glutamine were absorbed upon root feeding. The high capacity for root N uptake was maintained upon feeding traps with glutamine. High root acquisition of NH4(+) was mediated by 2.5-fold higher expression of the NH4(+) transporter DmAMT1 in the roots compared with the traps. Electrophysiological studies confirmed a high constitutive capacity for NH4(+) uptake by roots. Glutamine feeding of traps inhibited the influx of (15)N from root-absorbed (15)N/(13)C-glutamine into these traps, but not that of (13)C. Apparently, fed traps turned into carbon sinks that even acquired organic carbon from roots. N acquisition at the whole-plant level is fundamentally different in D. muscipula compared with noncarnivorous species, where foliar N influx down-regulates N uptake by roots.


Assuntos
Droseraceae/metabolismo , Nitrogênio/metabolismo , Fenômenos Fisiológicos da Nutrição , Raízes de Plantas/metabolismo , Compostos de Amônio/metabolismo , Animais , Isótopos de Carbono , Insetos , Dados de Sequência Molecular , Isótopos de Nitrogênio , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Comportamento Predatório
12.
Nat Commun ; 15(1): 159, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167673

RESUMO

Trees interact with a multitude of microbes through their roots and root symbionts such as mycorrhizal fungi and root endophytes. Here, we explore the role of fungal root symbionts as predictors of the soil and root-associated microbiomes of widespread broad-leaved trees across a European latitudinal gradient. Our results suggest that, alongside factors such as climate, soil, and vegetation properties, root colonization by ectomycorrhizal, arbuscular mycorrhizal, and dark septate endophytic fungi also shapes tree-associated microbiomes. Notably, the structure of root and soil microbiomes across our sites is more strongly and consistently associated with dark septate endophyte colonization than with mycorrhizal colonization and many abiotic factors. Root colonization by dark septate endophytes also has a consistent negative association with the relative abundance and diversity of nutrient cycling genes. Our study not only indicates that root-symbiotic interactions are an important factor structuring soil communities and functions in forest ecosystems, but also that the hitherto less studied dark septate endophytes are likely to be central players in these interactions.


Assuntos
Micorrizas , Raízes de Plantas , Raízes de Plantas/microbiologia , Árvores , Ecossistema , Solo/química , Endófitos , Europa (Continente) , Microbiologia do Solo , Fungos/genética
13.
Environ Microbiol Rep ; 16(2): e13253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575147

RESUMO

Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.


Assuntos
Micorrizas , Micorrizas/genética , Árvores/microbiologia , Filogenia , Biodiversidade , Fungos/genética , Plantas/microbiologia , Solo , Microbiologia do Solo
14.
Plant Cell Environ ; 36(5): 1019-26, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23146102

RESUMO

We investigated the interaction of rhizospheric nitric oxide (NO) concentration (i.e. low, ambient or high) and soil nitrogen (N) availability (i.e. low or high) with organic and inorganic N uptake by fine roots of Pinus sylvestris L. seedlings by (15) N feeding experiments under controlled conditions. N metabolites in fine roots were analysed to link N uptake to N nutrition. NO affected N uptake depending on N source and soil N availability. The suppression of nitrate uptake in the presence of ammonium and glutamine was overruled by high NO. The effects of NO on N uptake with increasing N availability showed different patterns: (1) increasing N uptake regardless of NO concentration (i.e. ammonium); (2) increasing N uptake only with high NO concentration (i.e. nitrate and arginine); and (3) decreasing N uptake (i.e. glutamine). At low N availability and high NO nitrate accumulated in the roots indicating insufficient substrates for nitrate reduction or its storage in root vacuoles. Individual amino acid concentrations were negatively affected with increasing NO (i.e. asparagine and glutamine with low N availability, serine and proline with high N availability). In conclusion, this study provides first evidence that NO affects N uptake and metabolism in a conifer.


Assuntos
Óxido Nítrico/metabolismo , Nitrogênio/metabolismo , Pinus sylvestris/metabolismo , Rizosfera , Plântula/metabolismo , Cloreto de Amônio/farmacologia , Transporte Biológico , Desnitrificação , Glutamina/metabolismo , Glutamina/farmacologia , Micorrizas/efeitos dos fármacos , Micorrizas/metabolismo , Nitratos/metabolismo , Óxido Nítrico/farmacologia , Nitrificação , Pinus sylvestris/efeitos dos fármacos , Pinus sylvestris/microbiologia , Compostos de Amônio Quaternário/metabolismo , Compostos de Amônio Quaternário/farmacologia , Solo/química
15.
Sci Adv ; 9(48): eadj8016, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019923

RESUMO

How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.


Assuntos
Ecossistema , Solo , Humanos , Fungos/genética , Filogenia , Microbiologia do Solo , Biodiversidade
16.
New Phytol ; 195(4): 832-843, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22758212

RESUMO

Ectomycorrhizal (ECM) fungi obtain both mineral and simple organic nutrients from soil and transport these to plant roots. Natural abundance of stable isotopes (¹5N and ¹³C) in fruit bodies and potential enzymatic activities of ECM root tips provide insights into mineral nutrition of these mutualistic partners. By combining rDNA sequence analysis with enzymatic and stable isotope assays of root tips, we hypothesized that phylogenetic affinities of ECM fungi are more important than ECM exploration type, soil horizon and host plant in explaining the differences in mineral nutrition of trees in an African lowland rainforest. Ectomycorrhizal fungal species belonging to extraradical mycelium-rich morphotypes generally displayed the strongest potential activities of degradation enzymes, except for laccase. The signature of ¹5N was determined by the ECM fungal lineage, but not by the exploration type. Potential enzymatic activities of root tips were unrelated to ¹5N signature of ECM root tip. The lack of correlation suggests that these methods address different aspects in plant nutrient uptake. Stable isotope analysis of root tips could provide an additional indirect assessment of fungal and plant nutrition that enables enhancement of taxonomic coverage and control for soil depth and internal nitrogen cycling in fungal tissues.


Assuntos
Marcação por Isótopo , Micorrizas/enzimologia , Micorrizas/genética , Filogenia , Chuva , Árvores/microbiologia , Clima Tropical , Isótopos de Carbono , Carpóforos/metabolismo , Gabão , Meristema/anatomia & histologia , Meristema/microbiologia , Isótopos de Nitrogênio
17.
Microorganisms ; 9(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670245

RESUMO

This study aimed to investigate the effects of different levels of soil- and plant-associated bacterial diversity on the rates of litter decomposition, and bacterial community dynamics during its early phases. We performed an incubation experiment where soil bacterial diversity (but not abundance) was manipulated by autoclaving and reinoculation. Natural or autoclaved maize leaves were applied to the soils and incubated for 6 weeks. Bacterial diversity was assessed before and during litter decomposition using 16S rRNA gene metabarcoding. We found a positive correlation between litter decomposition rates and soil bacterial diversity. The soil with the highest bacterial diversity was dominated by oligotrophic bacteria including Acidobacteria, Nitrospiraceae, and Gaiellaceae, and its community composition did not change during the incubation. In the less diverse soils, those taxa were absent but were replaced by copiotrophic bacteria, such as Caulobacteraceae and Beijerinckiaceae, until the end of the incubation period. SourceTracker analysis revealed that litter-associated bacteria, such as Beijerinckiaceae, only became part of the bacterial communities in the less diverse soils. This suggests a pivotal role of oligotrophic bacteria during the early phases of litter decomposition and the predominance of copiotrophic bacteria at low diversity.

18.
Sci Total Environ ; 767: 144653, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550064

RESUMO

The toxicity, volatility and persistence of the obsolete organochlorine pesticide hexachlorocyclohexane (HCH), makes reclamation of contaminated areas a priority for the health and welfare of neighboring human communities. Microbial diversity and functions and their relation to spontaneous vegetation in post-excavation situations, are essential indicators to consider in bioaugmentation or microbe-assisted phytoremediation strategies at field scale. Our study aimed to evaluate the effects of long-term HCH contamination on soil and plant-associated microbial communities, and whether contaminated soil has the potential to act as a bacterial inoculum in post-excavation bioremediation strategies. To scrutinize the role of vegetation, the potential nitrogen fixation of free-living and symbiotic diazotrophs of the legume Lotus tenuis was assessed as a measure of nutrient cycling functions in soil under HCH contamination. Potential nitrogen fixation was generally not affected by HCH, with the exception of lower nifH gene counts in excavated contaminated rhizospheres, most probably a short-term HCH effect on early bacterial succession in this compartment. HCH shaped microbial communities in long-term contaminated bulk soil, where we identified possible HCH tolerants such as Sphingomonas and Altererythrobacter. In L. tenuis rhizosphere, microbial community composition was additionally influenced by plant growth stage. Sphingobium and Massilia were the bacterial genera characteristic for HCH contaminated rhizospheres. Long-term HCH contamination negatively affected L. tenuis growth and development. However, root-associated bacterial community composition was driven solely by plant age, with negligible HCH effect. Results showed that L. tenuis acquired possible HCH tolerant bacteria such as the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade, Sphingomonas, Massilia or Pantoea which could simultaneously offer plant growth promoting (PGP) benefits for the host. Finally, we identified an inoculum with possibly HCH tolerant, PGP bacteria transferred from the contaminated bulk soil to L. tenuis roots through the rhizosphere compartment, consisting of Mesorhizobium loti, Neorhizobium galegae, Novosphingobium lindaniclasticum, Pantoea agglomerans and Lysobacter bugurensis.


Assuntos
Hexaclorocicloexano , Poluentes do Solo , Biodegradação Ambiental , Hexaclorocicloexano/análise , Hexaclorocicloexano/toxicidade , Humanos , Lysobacter , Mesorhizobium , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Sphingomonadaceae
19.
Nat Commun ; 12(1): 4115, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226560

RESUMO

The largest terrestrial organic carbon pool, carbon in soils, is regulated by an intricate connection between plant carbon inputs, microbial activity, and the soil matrix. This is manifested by how microorganisms, the key players in transforming plant-derived carbon into soil organic carbon, are controlled by the physical arrangement of organic and inorganic soil particles. Here we conduct an incubation of isotopically labelled litter to study effects of soil structure on the fate of litter-derived organic matter. While microbial activity and fungal growth is enhanced in the coarser-textured soil, we show that occlusion of organic matter into aggregates and formation of organo-mineral associations occur concurrently on fresh litter surfaces regardless of soil structure. These two mechanisms-the two most prominent processes contributing to the persistence of organic matter-occur directly at plant-soil interfaces, where surfaces of litter constitute a nucleus in the build-up of soil carbon persistence. We extend the notion of plant litter, i.e., particulate organic matter, from solely an easily available and labile carbon substrate, to a functional component at which persistence of soil carbon is directly determined.


Assuntos
Carbono/química , Material Particulado , Microbiologia do Solo , Solo/química , Biomassa , Ácidos Graxos , Fungos , Processos Heterotróficos , Minerais/química , Plantas
20.
Plant Sci ; 307: 110860, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902845

RESUMO

Developing strategies to improve nitrogen (N) use efficiency (NUE) in plants is a challenge to reduce environmental problems linked to over-fertilization. The nitric oxide synthase (NOS) enzyme from the cyanobacteria Synechococcus PCC 7335 (SyNOS) has been recently identified and characterized. SyNOS catalyzes the conversion of arginine to citrulline and nitric oxide (NO), and then approximately 75 % of the produced NO is rapidly oxidized to nitrate by an unusual globin domain in the N-terminus of the enzyme. In this study, we assessed whether SyNOS expression in plants affects N metabolism, NUE and yield. Our results showed that SyNOS-expressing transgenic Arabidopsis plants have greater primary shoot length and shoot branching when grown under N-deficient conditions and higher seed production both under N-sufficient and N-deficient conditions. Moreover, transgenic plants showed significantly increased NUE in both N conditions. Although the uptake of N was not modified in the SyNOS lines, they showed an increase in the assimilation/remobilization of N under conditions of low N availability. In addition, SyNOS lines have greater N-deficiency tolerance compared to control plants. Our results support that SyNOS expression generates a positive effect on N metabolism and seed production in Arabidopsis, and it might be envisaged as a strategy to improve productivity in crops under adverse N environments.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo , Arginina/metabolismo , Óxido Nítrico Sintase/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa