Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Immunol ; 208(7): 1813-1827, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35304420

RESUMO

Accurate prioritization of immunogenic neoantigens is key to developing personalized cancer vaccines and distinguishing those patients likely to respond to immune checkpoint inhibition. However, there is no consensus regarding which characteristics best predict neoantigen immunogenicity, and no model to date has both high sensitivity and specificity and a significant association with survival in response to immunotherapy. We address these challenges in the prioritization of immunogenic neoantigens by (1) identifying which neoantigen characteristics best predict immunogenicity; (2) integrating these characteristics into an immunogenicity score, the NeoScore; and (3) demonstrating a significant association of the NeoScore with survival in response to immune checkpoint inhibition. One thousand random and evenly split combinations of immunogenic and nonimmunogenic neoantigens from a validated dataset were analyzed using a regularized regression model for characteristic selection. The selected characteristics, the dissociation constant and binding stability of the neoantigen:MHC class I complex and expression of the mutated gene in the tumor, were integrated into the NeoScore. A web application is provided for calculation of the NeoScore. The NeoScore results in improved, or equivalent, performance in four test datasets as measured by sensitivity, specificity, and area under the receiver operator characteristics curve compared with previous models. Among cutaneous melanoma patients treated with immune checkpoint inhibition, a high maximum NeoScore was associated with improved survival. Overall, the NeoScore has the potential to improve neoantigen prioritization for the development of personalized vaccines and contribute to the determination of which patients are likely to respond to immunotherapy.


Assuntos
Vacinas Anticâncer , Melanoma , Neoplasias Cutâneas , Antígenos de Neoplasias , Humanos , Imunoterapia/métodos , Melanoma/terapia
2.
Hepatology ; 75(1): 43-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407567

RESUMO

BACKGROUND AND AIMS: Biliary tract cancers (BTCs) are uncommon, but highly lethal, gastrointestinal malignancies. Gemcitabine/cisplatin is a standard-of-care systemic therapy, but has a modest impact on survival and harbors toxicities, including myelosuppression, nephropathy, neuropathy, and ototoxicity. Whereas BTCs are characterized by aberrations activating the cyclinD1/cyclin-dependent kinase (CDK)4/6/CDK inhibitor 2a/retinoblastoma pathway, clinical use of CDK4/6 inhibitors as monotherapy is limited by lack of validated biomarkers, diffident preclinical efficacy, and development of acquired drug resistance. Emerging studies have explored therapeutic strategies to enhance the antitumor efficacy of CDK4/6 inhibitors by the combination with chemotherapy regimens, but their mechanism of action remains elusive. APPROACH AND RESULTS: Here, we report in vitro and in vivo synergy in BTC models, showing enhanced efficacy, reduced toxicity, and better survival with a combination comprising gemcitabine/cisplatin and CDK4/6 inhibitors. Furthermore, we demonstrated that abemaciclib monotherapy had only modest efficacy attributable to autophagy-induced resistance. Notably, triplet therapy was able to potentiate efficacy through elimination of the autophagic flux. Correspondingly, abemaciclib potentiated ribonucleotide reductase catalytic subunit M1 reduction, resulting in sensitization to gemcitabine. CONCLUSIONS: As such, these data provide robust preclinical mechanistic evidence of synergy between gemcitabine/cisplatin and CDK4/6 inhibitors and delineate a path forward for translation of these findings to preliminary clinical studies in advanced BTC patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Sistema Biliar/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Autofagia/efeitos dos fármacos , Neoplasias do Sistema Biliar/mortalidade , Neoplasias do Sistema Biliar/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Humanos , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
3.
Trends Genet ; 35(7): 478-488, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31200807

RESUMO

We hypothesize that, ancestrally, sex-specific immune modulation evolved to facilitate survival of the pregnant person in the presence of an invasive placenta and an immunologically challenging pregnancy - an idea we term the 'pregnancy compensation hypothesis' (PCH). Further, we propose that sex differences in immune function are mediated, at least in part, by the evolution of gene content and dosage on the sex chromosomes, and are regulated by reproductive hormones. Finally, we propose that changes in reproductive ecology in industrialized environments exacerbate these evolved sex differences, resulting in the increasing risk of autoimmune disease observed in females, and a counteracting reduction in diseases such as cancer that can be combated by heightened immune surveillance. The PCH generates a series of expectations that can be tested empirically and that may help to identify the mechanisms underlying sex differences in modern human diseases.


Assuntos
Doenças Autoimunes/etiologia , Hormônios/fisiologia , Gravidez/imunologia , Cromossomos Sexuais , Fatores Sexuais , Animais , Doenças Autoimunes/epidemiologia , Evolução Molecular , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mamíferos , Neoplasias/epidemiologia , Caracteres Sexuais , População Urbana
4.
J Immunol ; 203(10): 2577-2587, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31591149

RESUMO

The MHC class I Ag presentation pathway in melanoma cells has a well-established role in immune-mediated destruction of tumors. However, the clinical significance of the MHC class II Ag presentation pathway in melanoma cells is less clear. In Ag-presenting cells, IFN-γ-inducible lysosomal thiol reductase (GILT) is critical for MHC class II-restricted presentation of multiple melanoma Ags. Although not expressed in benign melanocytes of nevi, GILT and MHC class II expression is induced in malignant melanocytes in a portion of melanoma specimens. Analysis of The Cancer Genome Atlas cutaneous melanoma data set showed that high GILT mRNA expression was associated with improved overall survival. Expression of IFN-γ, TNF-α, and IL-1ß was positively associated with GILT expression in melanoma specimens. These cytokines were capable of inducing GILT expression in human melanoma cells in vitro. GILT protein expression in melanocytes was induced in halo nevi, which are nevi undergoing immune-mediated regression, and is consistent with the association of GILT expression with improved survival in melanoma. To explore potential mechanisms of GILT's association with patient outcome, we investigated pathways related to GILT function and expression. In contrast to healthy skin specimens, in which the MHC class II pathway was nearly uniformly expressed and intact, there was substantial variation in the MHC class II pathway in the The Cancer Genome Atlas melanoma specimens. Both an active and intact MHC class II pathway were associated with improved overall survival in melanoma. These studies support a role for GILT and the MHC class II Ag presentation pathway in melanoma outcome.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Melanoma/imunologia , Melanoma/mortalidade , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/mortalidade , Adolescente , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Masculino , Melanoma/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/farmacologia , Neoplasias Cutâneas/patologia , Taxa de Sobrevida , Adulto Jovem , Melanoma Maligno Cutâneo
5.
BMC Cancer ; 19(1): 951, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615477

RESUMO

BACKGROUND: Sex-differences in cancer occurrence and mortality are evident across tumor types; men exhibit higher rates of incidence and often poorer responses to treatment. Targeted approaches to the treatment of tumors that account for these sex-differences require the characterization and understanding of the fundamental biological mechanisms that differentiate them. Hepatocellular Carcinoma (HCC) is the second leading cause of cancer death worldwide, with the incidence rapidly rising. HCC exhibits a male-bias in occurrence and mortality, but previous studies have failed to explore the sex-specific dysregulation of gene expression in HCC. METHODS: Here, we characterize the sex-shared and sex-specific regulatory changes in HCC tumors in the TCGA LIHC cohort using combined and sex-stratified differential expression and eQTL analyses. RESULTS: By using a sex-specific differential expression analysis of tumor and tumor-adjacent samples, we uncovered etiologically relevant genes and pathways differentiating male and female HCC. While both sexes exhibited activation of pathways related to apoptosis and cell cycle, males and females differed in the activation of several signaling pathways, with females showing PPAR pathway enrichment while males showed PI3K, PI3K/AKT, FGFR, EGFR, NGF, GF1R, Rap1, DAP12, and IL-2 signaling pathway enrichment. Using eQTL analyses, we discovered germline variants with differential effects on tumor gene expression between the sexes. 24.3% of the discovered eQTLs exhibit differential effects between the sexes, illustrating the substantial role of sex in modifying the effects of eQTLs in HCC. The genes that showed sex-specific dysregulation in tumors and those that harbored a sex-specific eQTL converge in clinically relevant pathways, suggesting that the molecular etiologies of male and female HCC are partially driven by differential genetic effects on gene expression. CONCLUSIONS: Sex-stratified analyses detect sex-specific molecular etiologies of HCC. Overall, our results provide new insight into the role of inherited genetic regulation of transcription in modulating sex-differences in HCC etiology and provide a framework for future studies on sex-biased cancers.


Assuntos
Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/genética , Idoso , Biomarcadores Tumorais/genética , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Frequência do Gene/genética , Genes Neoplásicos/genética , Genótipo , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Transdução de Sinais/genética , Transcriptoma/genética
8.
Nucleic Acids Res ; 44(9): e81, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26809676

RESUMO

The cancer genome is abnormal genome, and the ability to monitor its sequence had undergone a technological revolution. Yet prognosis and diagnosis remain an expert-based decision, with only limited abilities to provide machine-based decisions. We introduce a heterogeneity-based method for stratifying and visualizing whole-genome sequencing (WGS) reads. This method uses the heterogeneity within WGS reads to markedly reduce the dimensionality of next-generation sequencing data; it is available through the tool HiBS (Heterogeneity-Based Subclassification) that allows cancer sample classification. We validated HiBS using >200 WGS samples from nine different cancer types from The Cancer Genome Atlas (TCGA). With HiBS, we show progress with two WGS related issues: (i) differentiation between normal (NB) and tumor (TP) samples based solely on the information structure of their WGS data, and (ii) identification of specific regions of chromosomal amplification/deletion and their association with tumor stage. By comparing results to those obtained through available WGS analyses tools, we demonstrate some of the novelties obtained by the approach implemented in HiBS and also show nearly perfect normal/tumor classification, used to identify known and unknown chromosomal aberrations. Finally, the HiBS index has been associated with breast cancer tumor stage.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Biologia Computacional/métodos , Genoma Humano/genética , Genômica/métodos , Algoritmos , Proteína BRCA1/genética , Proteína BRCA2/genética , Sequência de Bases , Neoplasias da Mama/mortalidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Estadiamento de Neoplasias , Análise de Sequência de DNA/métodos
9.
Nature ; 471(7337): 235-9, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21390130

RESUMO

Relapsed acute lymphoblastic leukaemia (ALL) is a leading cause of death due to disease in young people, but the biological determinants of treatment failure remain poorly understood. Recent genome-wide profiling of structural DNA alterations in ALL have identified multiple submicroscopic somatic mutations targeting key cellular pathways, and have demonstrated substantial evolution in genetic alterations from diagnosis to relapse. However, DNA sequence mutations in ALL have not been analysed in detail. To identify novel mutations in relapsed ALL, we resequenced 300 genes in matched diagnosis and relapse samples from 23 patients with ALL. This identified 52 somatic non-synonymous mutations in 32 genes, many of which were novel, including the transcriptional coactivators CREBBP and NCOR1, the transcription factors ERG, SPI1, TCF4 and TCF7L2, components of the Ras signalling pathway, histone genes, genes involved in histone modification (CREBBP and CTCF), and genes previously shown to be targets of recurring DNA copy number alteration in ALL. Analysis of an extended cohort of 71 diagnosis-relapse cases and 270 acute leukaemia cases that did not relapse found that 18.3% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase CREB-binding protein (CREBBP, also known as CBP). The mutations were either present at diagnosis or acquired at relapse, and resulted in truncated alleles or deleterious substitutions in conserved residues of the histone acetyltransferase domain. Functionally, the mutations impaired histone acetylation and transcriptional regulation of CREBBP targets, including glucocorticoid responsive genes. Several mutations acquired at relapse were detected in subclones at diagnosis, suggesting that the mutations may confer resistance to therapy. These results extend the landscape of genetic alterations in leukaemia, and identify mutations targeting transcriptional and epigenetic regulation as a mechanism of resistance in ALL.


Assuntos
Proteína de Ligação a CREB/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Acetilação , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Estrutura Terciária de Proteína/genética , Recidiva
10.
Blood ; 121(3): 485-8, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23212523

RESUMO

One recently identified subtype of pediatric B-precursor acute lymphoblastic leukemia (ALL) has been termed BCR-ABL1-like or Ph-like because of similarity of the gene expression profile to BCR-ABL1 positive ALL suggesting the presence of lesions activating tyrosine kinases, frequent alteration of IKZF1, and poor outcome. Prior studies demonstrated that approximately half of these patients had genomic lesions leading to CRLF2 overexpression, with half of such cases harboring somatic mutations in the Janus kinases JAK1 and JAK2. To determine whether mutations in other tyrosine kinases might also occur in ALL, we sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with either a Ph-like gene expression profile or other alterations suggestive of activated kinase signaling. Aside from JAK mutations and 1 FLT3 mutation, no somatic mutations were found in any other tyrosine kinases, suggesting that alternative mechanisms are responsible for activated kinase signaling in high-risk ALL.


Assuntos
Regulação Leucêmica da Expressão Gênica/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Tirosina Quinases/genética , Transcriptoma , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Neoplasia Residual/enzimologia , Neoplasia Residual/genética , Neoplasia Residual/mortalidade , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Proteínas Tirosina Quinases/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores Purinérgicos P2Y/genética , Receptores Purinérgicos P2Y/metabolismo , Transdução de Sinais/genética , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(8): 3184-9, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22308418

RESUMO

Metastatic disease is the proximal cause of mortality for most cancers and remains a significant problem for the clinical management of neoplastic disease. Recent advances in global transcriptional analysis have enabled better prediction of individuals likely to progress to metastatic disease. However, minimal overlap between predictive signatures has precluded easy identification of key biological processes contributing to the prometastatic transcriptional state. To overcome this limitation, we have applied network analysis to two independent human breast cancer datasets and three different mouse populations developed for quantitative analysis of metastasis. Analysis of these datasets revealed that the gene membership of the networks is highly conserved within and between species, and that these networks predicted distant metastasis free survival. Furthermore these results suggest that susceptibility to metastatic disease is cell-autonomous in estrogen receptor-positive tumors and associated with the mitotic spindle checkpoint. In contrast, nontumor genetics and pathway activities-associated stromal biology are significant modifiers of the rate of metastatic spread of estrogen receptor-negative tumors. These results suggest that the application of network analysis across species may provide a robust method to identify key biological programs associated with human cancer progression.


Assuntos
Suscetibilidade a Doenças , Redes Reguladoras de Genes/genética , Metástase Neoplásica/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Bases de Dados Genéticas , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores de Estrogênio/metabolismo , Especificidade da Espécie , Tetraspanina 25/metabolismo
12.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405868

RESUMO

Challenges in identifying tumor-rejecting neoantigens limit the efficacy of neoantigen vaccines to treat cancers, including cutaneous squamous cell carcinoma (cSCC). A minority of human cSCC tumors shared neoantigens, supporting the need for personalized vaccines. Using a UV-induced mouse cSCC model which recapitulated the mutational signature and driver mutations found in human disease, we found that CD8 T cells constrain cSCC. Two MHC class I neoantigens were identified that constrained cSCC growth. Compared to the wild-type peptides, one tumor-rejecting neoantigen exhibited improved MHC binding and the other had increased solvent accessibility of the mutated residue. Across known neoantigens that do not impact MHC binding, structural modeling of the peptide/MHC complexes indicated that increased solvent accessibility, which will facilitate TCR recognition of the neoantigen, distinguished tumor-rejecting from non-immunogenic neoantigens. This work reveals characteristics of tumor-rejecting neoantigens that may be of considerable importance in identifying optimal vaccine candidates in cSCC and other cancers.

13.
Geroscience ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683289

RESUMO

Industrialized environments, despite benefits such as higher levels of formal education and lower rates of infections, can also have pernicious impacts upon brain atrophy. Partly for this reason, comparing age-related brain volume trajectories between industrialized and non-industrialized populations can help to suggest lifestyle correlates of brain health. The Tsimane, indigenous to the Bolivian Amazon, derive their subsistence from foraging and horticulture and are physically active. The Moseten, a mixed-ethnicity farming population, are physically active but less than the Tsimane. Within both populations (N = 1024; age range = 46-83), we calculated regional brain volumes from computed tomography and compared their cross-sectional trends with age to those of UK Biobank (UKBB) participants (N = 19,973; same age range). Surprisingly among Tsimane and Moseten (T/M) males, some parietal and occipital structures mediating visuospatial abilities exhibit small but significant increases in regional volume with age. UKBB males exhibit a steeper negative trend of regional volume with age in frontal and temporal structures compared to T/M males. However, T/M females exhibit significantly steeper rates of brain volume decrease with age compared to UKBB females, particularly for some cerebro-cortical structures (e.g., left subparietal cortex). Across the three populations, observed trends exhibit no interhemispheric asymmetry. In conclusion, the age-related rate of regional brain volume change may differ by lifestyle and sex. The lack of brain volume reduction with age is not known to exist in other human population, highlighting the putative role of lifestyle in constraining regional brain atrophy and promoting elements of non-industrialized lifestyle like higher physical activity.

14.
Blood ; 118(11): 3080-7, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21680795

RESUMO

We sequenced 120 candidate genes in 187 high-risk childhood B-precursor acute lymphoblastic leukemias, the largest pediatric cancer genome sequencing effort reported to date. Integrated analysis of 179 validated somatic sequence mutations with genome-wide copy number alterations and gene expression profiles revealed a high frequency of recurrent somatic alterations in key signaling pathways, including B-cell development/differentiation (68% of cases), the TP53/RB tumor suppressor pathway (54%), Ras signaling (50%), and Janus kinases (11%). Recurrent mutations were also found in ETV6 (6 cases), TBL1XR1 (3), CREBBP (3), MUC4 (2), ASMTL (2), and ADARB2 (2). The frequency of mutations within the 4 major pathways varied markedly across genetic subtypes. Among 23 leukemias expressing a BCR-ABL1-like gene expression profile, 96% had somatic alterations in B-cell development/differentiation, 57% in JAK, and 52% in both pathways, whereas only 9% had Ras pathway mutations. In contrast, 21 cases defined by a distinct gene expression profile coupled with focal ERG deletion rarely had B-cell development/differentiation or JAK kinase alterations but had a high frequency (62%) of Ras signaling pathway mutations. These data extend the range of genes that are recurrently mutated in high-risk childhood B-precursor acute lymphoblastic leukemia and highlight important new therapeutic targets for selected patient subsets.


Assuntos
Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Frequência do Gene , Genes ras/genética , Humanos , Lactente , Masculino , Oncologia/organização & administração , Mutação/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/classificação , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Fatores de Risco , Transdução de Sinais/genética , Sociedades Médicas
15.
Mol Ther Oncolytics ; 29: 4-14, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36969560

RESUMO

Vesiculoviruses are attractive oncolytic virus platforms due to their rapid replication, appreciable transgene capacity, broad tropism, limited preexisting immunity, and tumor selectivity through type I interferon response defects in malignant cells. We developed a synthetic chimeric virus (VMG) expressing the glycoprotein (G) from Morreton virus (MorV) and utilizing the remaining structural genes from vesicular stomatitis virus (VSV). VMG exhibited in vitro efficacy by inducing oncolysis in a broad range of sarcoma subtypes across multiple species. Notably, all cell lines tested showed the ability of VMG to yield productive infection with rapid replication kinetics and induction of apoptosis. Furthermore, pilot safety evaluations of VMG in immunocompetent, non-tumor-bearing mice showed an absence of toxicity with intranasal doses as high as 1e10 50% tissue culture infectious dose (TCID50)/kg. Locoregional administration of VMG in vivo resulted in tumor reduction in an immunodeficient Ewing sarcoma xenograft at doses as low as 2e5 TCID50. In a murine syngeneic fibrosarcoma model, while no tumor inhibition was achieved with VMG, there was a robust induction of CD8+ T cells within the tumor. The studies described herein establish the promising potential for VMG to be used as a novel oncolytic virotherapy platform with anticancer effects in sarcoma.

16.
Genome Res ; 19(12): 2324-33, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19767417

RESUMO

Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide.


Assuntos
Clonagem Molecular/métodos , Biologia Computacional/métodos , DNA Complementar/genética , Biblioteca Gênica , Genes/genética , Mamíferos/genética , Animais , DNA/biossíntese , Humanos , Camundongos , National Institutes of Health (U.S.) , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estados Unidos
17.
Bioinformatics ; 27(6): 865-6, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21278191

RESUMO

SUMMARY: Bambino is a variant detector and graphical alignment viewer for next-generation sequencing data in the SAM/BAM format, which is capable of pooling data from multiple source files. The variant detector takes advantage of SAM-specific annotations, and produces detailed output suitable for genotyping and identification of somatic mutations. The assembly viewer can display reads in the context of either a user-provided or automatically generated reference sequence, retrieve genome annotation features from a UCSC genome annotation database, display histograms of non-reference allele frequencies, and predict protein-coding changes caused by SNPs. AVAILABILITY: Bambino is written in platform-independent Java and available from https://cgwb.nci.nih.gov/goldenPath/bamview/documentation/index.html, along with documentation and example data. Bambino may be launched online via Java Web Start or downloaded and run locally.


Assuntos
Gráficos por Computador , Análise Mutacional de DNA/métodos , Alinhamento de Sequência/métodos , Software , Biologia Computacional/métodos , Frequência do Gene , Genômica/métodos , Genótipo , Internet , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único
18.
Cancer Cell ; 1(4): 315-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12086845

RESUMO

The Cancer Molecular Analysis Project (CMAP) of the NCI is integrating diverse cancer research data to elucidate fundamental etiologic processes, enable development of novel therapeutic approaches, and facilitate the bridging of basic and clinical science.


Assuntos
Neoplasias/etiologia , Pesquisa , Ciclo Celular/fisiologia , Ciclinas/metabolismo , Humanos , National Institutes of Health (U.S.) , Neoplasias/metabolismo , Transdução de Sinais , Estados Unidos
19.
BMC Med Genomics ; 15(1): 255, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503519

RESUMO

BACKGROUND: Neanderthal introgressed DNA has been linked to different normal and disease traits including immunity and metabolism-two important functions that are altered in liver cancer. However, there is limited understanding of the relationship between Neanderthal introgression and liver cancer risk. The aim of this study was to investigate the relationship between Neanderthal introgression and liver cancer risk. METHODS: Using germline and somatic DNA and tumor RNA from liver cancer patients from The Cancer Genome Atlas, along with ancestry-match germline DNA from unaffected individuals from the 1000 Genomes Resource, and allele specific expression data from normal liver tissue from The Genotype-Tissue Expression project we investigated whether Neanderthal introgression impacts cancer etiology. Using a previously generated set of Neanderthal alleles, we identified Neanderthal introgressed haplotypes. We then tested whether somatic mutations are enriched or depleted on Neanderthal introgressed haplotypes compared to modern haplotypes. We also computationally assessed whether somatic mutations have a functional effect or show evidence of regulating expression of Neanderthal haplotypes. Finally, we compared patterns of Neanderthal introgression in liver cancer patients and the general population. RESULTS: We find Neanderthal introgressed haplotypes exhibit an excess of somatic mutations compared to modern haplotypes. Variant Effect Predictor analysis revealed that most of the somatic mutations on these Neanderthal introgressed haplotypes are not functional. We did observe expression differences of Neanderthal alleles between tumor and normal for four genes that also showed a pattern of enrichment of somatic mutations on Neanderthal haplotypes. However, gene expression was similar between liver cancer patients with modern ancestry and liver cancer patients with Neanderthal ancestry at these genes. Provocatively, when analyzing all genes, we find evidence of Neanderthal introgression regulating expression in tumor from liver cancer patients in two genes, ARK1C4 and OAS1. Finally, we find that most genes do not show a difference in the proportion of Neanderthal introgression between liver cancer patients and the general population. CONCLUSION: Our results suggest that Neanderthal introgression provides opportunity for somatic mutations to accumulate, and that some Neanderthal introgression may impact liver cancer risk.


Assuntos
Neoplasias Hepáticas , Homem de Neandertal , Humanos , Animais , Homem de Neandertal/genética , Haplótipos , Alelos , Neoplasias Hepáticas/genética
20.
Front Oncol ; 12: 836821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311072

RESUMO

Prioritization of immunogenic neoantigens is key to enhancing cancer immunotherapy through the development of personalized vaccines, adoptive T cell therapy, and the prediction of response to immune checkpoint inhibition. Neoantigens are tumor-specific proteins that allow the immune system to recognize and destroy a tumor. Cancer immunotherapies, such as personalized cancer vaccines, adoptive T cell therapy, and immune checkpoint inhibition, rely on an understanding of the patient-specific neoantigen profile in order to guide personalized therapeutic strategies. Genomic approaches to predicting and prioritizing immunogenic neoantigens are rapidly expanding, raising new opportunities to advance these tools and enhance their clinical relevance. Predicting neoantigens requires acquisition of high-quality samples and sequencing data, followed by variant calling and variant annotation. Subsequently, prioritizing which of these neoantigens may elicit a tumor-specific immune response requires application and integration of tools to predict the expression, processing, binding, and recognition potentials of the neoantigen. Finally, improvement of the computational tools is held in constant tension with the availability of datasets with validated immunogenic neoantigens. The goal of this review article is to summarize the current knowledge and limitations in neoantigen prediction, prioritization, and validation and propose future directions that will improve personalized cancer treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa