Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38453632

RESUMO

OBJECTIVES: People may experience a myriad of symptoms after mild traumatic brain injury (mTBI), but the relationship between symptoms and objective assessments is poorly characterized. This study sought to investigate the association between symptoms, resting heart rate (HR), and exercise tolerance in individuals following mTBI, with a secondary aim to examine the relationship between symptom-based clinical profiles and recovery. METHODS: Prospective observational study of adults aged 18 to 65 years who had sustained mTBI within the previous 7 days. Symptoms were assessed using the Post-Concussion Symptom Scale, HR was measured at rest, and exercise tolerance was assessed using the Buffalo Concussion Bike Test. Symptom burden and symptom-based clinical profiles were examined with respect to exercise tolerance and resting HR. RESULTS: Data from 32 participants were assessed (mean age 36.5 ± 12.6 years, 41% female, 5.7 ± 1.1 days since injury). Symptom burden (number of symptoms and symptom severity) was significantly associated with exercise intolerance (P = .002 and P = .025, respectively). Physiological and vestibular-ocular clinical profile composite groups were associated with exercise tolerance (P = .001 and P = .014, respectively), with individuals who were exercise intolerant having a higher mean number of symptoms in each profile than those who were exercise tolerant. Mood-related and autonomic clinical profiles were associated with a higher resting HR (>80 bpm) (P = .048 and P = .028, respectively), suggesting altered autonomic response for participants with symptoms relating to this profile. After adjusting for age and mechanism of injury (sports- or non-sports-related), having a higher mood-related clinical profile was associated with persisting symptoms at 3 months postinjury (adjusted odds ratio = 2.08; 95% CI, 1.11-3.90; P = .013). CONCLUSION: Symptom-based clinical profiles, in conjunction with objective measures such as resting HR and exercise tolerance, are important components of clinical care for those having sustained mTBI. These results provide preliminary support for the concept that specific symptoms are indicative of autonomic dysfunction following mTBI.

2.
J Integr Neurosci ; 22(2): 50, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992597

RESUMO

BACKGROUND: An estimated 99 in 100,000 people experience a traumatic brain injury (TBI), with 85% being mild (mTBI) in nature. The Post-Concussion Symptom Scale (PCSS), is a reliable and valid measure of post-mTBI symptoms; however, diagnostic specificity is challenging due to high symptom rates in the general population. Understanding the neurobiological characteristics that distinguish high and low PCSS raters may provide further clarification on this phenomenon. AIM: To explore the neurobiological characteristics of post-concussion symptoms through the association between PCSS scores, brain network connectivity (using quantitative electroencephalography; qEEG) and cognition in undergraduates. HYPOTHESES: high PCSS scorers will have (1) more network dysregulation and (2) more cognitive dysfunction compared to the low PCSS scorers. METHODS: A sample of 40 undergraduates were divided into high and low PCSS scorers. Brain connectivity was measured using qEEG, and cognition was measured via neuropsychological measures of sustained attention, inhibition, immediate attention, working memory, processing speed and inhibition/switching. RESULTS: Contrary to expectations, greater frontoparietal network dysregulation was seen in the low PCSS score group (p = 0.003). No significant difference in cognitive dysfunction was detected between high and low PCSS scorers. Post-hoc analysis in participants who had experienced mTBI revealed greater network dysregulation in those reporting a more recent mTBI. CONCLUSIONS: Measuring post-concussion symptoms alone is not necessarily informative about changes in underlying neural mechanisms. In an exploratory subset analysis, brain network dysregulation appears to be greater in the early post-injury phase compared to later. Further analysis of underlying PCSS constructs and how to measure these in a non-athlete population and clinical samples is warranted.


Assuntos
Concussão Encefálica , Síndrome Pós-Concussão , Humanos , Síndrome Pós-Concussão/diagnóstico , Síndrome Pós-Concussão/psicologia , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico , Concussão Encefálica/psicologia , Testes Neuropsicológicos , Austrália , Encéfalo/diagnóstico por imagem , Cognição
3.
BMJ Open ; 11(5): e046460, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986061

RESUMO

INTRODUCTION: Mild traumatic brain injury (mTBI) is a complex injury with heterogeneous physical, cognitive, emotional and functional outcomes. Many who sustain mTBI recover within 2 weeks of injury; however, approximately 10%-20% of individuals experience mTBI symptoms beyond this 'typical' recovery timeframe, known as persistent post-concussion symptoms (PPCS). Despite increasing interest in PPCS, uncertainty remains regarding its prevalence in community-based populations and the extent to which poor recovery may be identified using early predictive markers. OBJECTIVE: (1) Establish a research dataset of people who have experienced mTBI and document their recovery trajectories; (2) Evaluate a broad range of novel and established prognostic factors for inclusion in a predictive model for PPCS. METHODS AND ANALYSIS: The Concussion Recovery Study (CREST) is a prospective, longitudinal observational cohort study conducted in Perth, Western Australia. CREST is recruiting adults aged 18-65 from medical and community-based settings with acute diagnosis of mTBI. CREST will create a state-wide research dataset of mTBI cases, with data being collected in two phases. Phase I collates data on demographics, medical background, lifestyle habits, nature of injury and acute mTBI symptomatology. In Phase II, participants undergo neuropsychological evaluation, exercise tolerance and vestibular/ocular motor screening, MRI, quantitative electroencephalography and blood-based biomarker assessment. Follow-up is conducted via telephone interview at 1, 3, 6 and 12 months after injury. Primary outcome measures are presence of PPCS and quality of life, as measured by the Post-Concussion Symptom Scale and the Quality of Life after Brain Injury questionnaires, respectively. Multivariate modelling will examine the prognostic value of promising factors. ETHICS AND DISSEMINATION: Human Research Ethics Committees of Royal Perth Hospital (#RGS0000003024), Curtin University (HRE2019-0209), Ramsay Health Care (#2009) and St John of God Health Care (#1628) have approved this study protocol. Findings will be published in peer-reviewed journals and presented at scientific conferences. TRIAL REGISTRATION NUMBER: ACTRN12619001226190.


Assuntos
Concussão Encefálica , Síndrome Pós-Concussão , Adulto , Concussão Encefálica/diagnóstico , Estudos de Coortes , Humanos , Estudos Observacionais como Assunto , Síndrome Pós-Concussão/diagnóstico , Estudos Prospectivos , Qualidade de Vida , Austrália Ocidental
4.
Front Hum Neurosci ; 14: 598208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362494

RESUMO

Background: Mild traumatic brain injury (mTBI) results from an external force to the head or body causing neurophysiological changes within the brain. The number and severity of symptoms can vary, with some individuals experiencing rapid recovery, and others having persistent symptoms for months to years, impacting their quality of life. Current rehabilitation is limited in its ability to treat persistent symptoms and novel approaches are being sought to improve outcomes following mTBI. Neuromodulation is one technique used to encourage adaptive neuroplasticity within the brain. Objective: To systematically review the literature on the efficacy of neuromodulation in the mTBI population. Method: A systematic review was conducted using Medline, Embase, PsycINFO, PsycARTICLES and EBM Review. Preferred Reporting Items for Systematic Reviews and the Synthesis Without Meta-analysis reporting guidelines were used and a narrative review of the selected studies was completed. Fourteen articles fulfilled the inclusion criteria which were published in English, investigating an adult sample and using a pre- and post-intervention design. Studies were excluded if they included non-mild TBI severities, pediatric or older adult populations. Results: Thirteen of fourteen studies reported positive reductions in mTBI symptomatology following neuromodulation. Specifically, improvements were reported in post-concussion symptom ratings, headaches, dizziness, depression, anxiety, sleep disturbance, general disability, cognition, return to work and quality of life. Normalization of working memory activation patterns, vestibular field potentials, hemodynamics of the dorsolateral prefrontal cortex and excessive delta wave activity were also seen. The studies reviewed had several methodological limitations including small, heterogenous samples and varied intervention protocols, limiting generalisability. Further research is required to understand the context in which neuromodulation may be beneficial. Conclusions: While these positive effects are observed, limitations included unequal representation of neuromodulation modalities in the literature, and lack of literature describing the efficacy of neuromodulation on the development or duration of persistent mTBI symptoms. Better clarity regarding neuromodulation efficacy could have a significant impact on mTBI patients, researchers, clinicians, and policy makers, facilitating a more productive post-mTBI population. Despite the limitations, the literature indicates that neuromodulation warrants further investigation. PROSPERO registration number: CRD42020161279.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa