Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015936

RESUMO

Waste management is one of the challenges facing countries globally, leading to the need for innovative ways to design and operationalize smart waste bins for effective waste collection and management. The inability of extant waste bins to facilitate sorting of solid waste at the point of collection and the attendant impact on waste management process is the motivation for this study. The South African University of Technology (SAUoT) is used as a case study because solid waste management is an aspect where SAUoT is exerting an impact by leveraging emerging technologies. In this article, a convolutional neural network (CNN) based model called You-Only-Look-Once (YOLO) is employed as the object detection algorithm to facilitate the classification of waste according to various categories at the point of waste collection. Additionally, a nature-inspired search method is used as learning rate for the CNN model. The custom YOLO model was developed for waste object detection, trained with different weights and backbones, namely darknet53.conv.74, darknet19_448.conv.23, Yolov4.conv.137 and Yolov4-tiny.conv.29, respectively, for Yolov3, Yolov3-tiny, Yolov4 and Yolov4-tiny models. Eight (8) classes of waste and a total of 3171 waste images are used. The performance of YOLO models is considered in terms of accuracy of prediction (Average Precision-AP) and speed of prediction measured in milliseconds. A lower loss value out of a percentage shows a higher performance of prediction and a lower value on speed of prediction. The results of the experiment show that Yolov3 has better accuracy of prediction as compared with Yolov3-tiny, Yolov4 and Yolov4-tiny. Although the Yolov3-tiny is quick at predicting waste objects, the accuracy of its prediction is limited. The mean AP (%) for each trained version of YOLO models is Yolov3 (80%), Yolov4-tiny (74%), Yolov3-tiny (57%) and Yolov4 (41%). This result of mAP (%) indicates that the Yolov3 model produces the best performance results (80%). In this regard, it is useful to implement a model that ensures accurate prediction to develop a smart waste bin system at the institution. The experimental results show the combination of KSA learning rate parameter of 0.0007 and Yolov3 is identified as the accurate model for waste object detection and classification. The use of nature-inspired search methods, such as the Kestrel-based Search Algorithm (KSA), has shown future prospect in terms of learning rate parameter determination in waste object detection and classification. Consequently, it is imperative for an EdgeIoT-enabled system to be equipped with Yolov3 for waste object detection and classification, thereby facilitating effective waste collection.


Assuntos
Algoritmos , Redes Neurais de Computação
2.
Sensors (Basel) ; 18(7)2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987224

RESUMO

Recently, the concept of Internet of Agent has been introduced as a potential technology that pushes intelligence, data processing, analytics and communication capabilities down to the point where the data originates. In this paper, we introduce a novel approach for a Decentralized Home Energy Management System by applying the Internet of Agent concept. In particular, we first present an Internet of Agent framework in terms of sensing, communicating and collaborating among connected appliances. Then, the decentralized management based on consensual negotiation mechanism with several intelligent techniques are proposed for dynamic scheduling connected appliance. Specifically, by applying the Internet of Agent framework, connected appliances are regarded as smart agents that are able to make individual decisions by reaching agreement over the exchange of operations on competitive resources. Furthermore, in this study, the load balancing problem in which load shifting is able to reduce the electricity demand during peak hours is taken into account in order to emphasize the effectiveness of our approach. For the experiment, we develop a simulation of smart home environment to evaluate our approach using NetLogo, a tool which provides real-time analysis in the modeling and simulation domain of complex systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa