Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34571541

RESUMO

The Rossmann fold enzymes are involved in essential biochemical pathways such as nucleotide and amino acid metabolism. Their functioning relies on interaction with cofactors, small nucleoside-based compounds specifically recognized by a conserved ßαß motif shared by all Rossmann fold proteins. While Rossmann methyltransferases recognize only a single cofactor type, the S-adenosylmethionine, the oxidoreductases, depending on the family, bind nicotinamide (nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate) or flavin-based (flavin adenine dinucleotide) cofactors. In this study, we showed that despite its short length, the ßαß motif unambiguously defines the specificity towards the cofactor. Following this observation, we trained two complementary deep learning models for the prediction of the cofactor specificity based on the sequence and structural features of the ßαß motif. A benchmark on two independent test sets, one containing ßαß motifs bearing no resemblance to those of the training set, and the other comprising 38 experimentally confirmed cases of rational design of the cofactor specificity, revealed the nearly perfect performance of the two methods. The Rossmann-toolbox protocols can be accessed via the webserver at https://lbs.cent.uw.edu.pl/rossmann-toolbox and are available as a Python package at https://github.com/labstructbioinf/rossmann-toolbox.


Assuntos
Aprendizado Profundo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , Proteínas
2.
Bioinformatics ; 36(22-23): 5368-5376, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325494

RESUMO

MOTIVATION: Coiled coils are widespread protein domains involved in diverse processes ranging from providing structural rigidity to the transduction of conformational changes. They comprise two or more α-helices that are wound around each other to form a regular supercoiled bundle. Owing to this regularity, coiled-coil structures can be described with parametric equations, thus enabling the numerical representation of their properties, such as the degree and handedness of supercoiling, rotational state of the helices, and the offset between them. These descriptors are invaluable in understanding the function of coiled coils and designing new structures of this type. The existing tools for such calculations require manual preparation of input and are therefore not suitable for the high-throughput analyses. RESULTS: To address this problem, we developed SamCC-Turbo, a software for fully automated, per-residue measurement of coiled coils. By surveying Protein Data Bank with SamCC-Turbo, we generated a comprehensive atlas of ∼50 000 coiled-coil regions. This machine learning-ready dataset features precise measurements as well as decomposes coiled-coil structures into fragments characterized by various degrees of supercoiling. The potential applications of SamCC-Turbo are exemplified by analyses in which we reveal general structural features of coiled coils involved in functions requiring conformational plasticity. Finally, we discuss further directions in the prediction and modeling of coiled coils. AVAILABILITY AND IMPLEMENTATION: SamCC-Turbo is available as a web server (https://lbs.cent.uw.edu.pl/samcc_turbo) and as a Python library (https://github.com/labstructbioinf/samcc_turbo), whereas the results of the Protein Data Bank scan can be browsed and downloaded at https://lbs.cent.uw.edu.pl/ccdb. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa