Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chromosome Res ; 24(2): 145-59, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26611440

RESUMO

The subfamily Arvicolinae consists of a great number of species with highly diversified karyotypes. In spite of the wide use of arvicolines in biological and medicine studies, the data on their karyotype structures are limited. Here, we made a set of painting probes from flow-sorted chromosomes of a male Palearctic collared lemming (Dicrostonyx torquatus, DTO). Together with the sets of painting probes made previously from the field vole (Microtus agrestis, MAG) and golden hamster (Mesocricetus auratus, MAU), we carried out a reciprocal chromosome painting between these three species. The three sets of probes were further hybridized onto the chromosomes of the Eurasian water vole (Arvicola amphibius) and northern red-backed vole (Myodes rutilus). We defined the diploid chromosome number in D. torquatus karyotype as 2n = 45 + Bs and showed that the system of sex chromosomes is X1X2Y1. The probes developed here provide a genomic tool-kit, which will help to investigate the evolutionary biology of the Arvicolinae rodents. Our results show that the syntenic association MAG1/17 is present not only in Arvicolinae but also in some species of Cricetinae; and thus, should not be considered as a cytogenetic signature for Arvicolinae. Although cytogenetic signature markers for the genera have not yet been found, our data provides insight into the likely ancestral karyotype of Arvicolinae. We conclude that the karyotypes of modern voles could have evolved from a common ancestral arvicoline karyotype (AAK) with 2n = 56 mainly by centric fusions and fissions.


Assuntos
Arvicolinae/genética , Mapeamento Cromossômico/métodos , Coloração Cromossômica/métodos , Mesocricetus/genética , Sintenia/genética , Animais , Evolução Biológica , Linhagem Celular , Aberrações Cromossômicas , Bandeamento Cromossômico , Cricetinae , Marcadores Genéticos/genética , Cariótipo , Filogenia , Cromossomos Sexuais/genética
2.
Comp Cytogenet ; 14(3): 313-318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754304

RESUMO

This paper is a review of the rare phenomenon of chromosome intraspecies variation manifested in monobrachial homology series in the comprehensively investigated karyotype of the common shrew Sorex araneus Linnaeus, 1758 (Eulipotyphla, Mammalia). The detailed dataset on the account of this mammalian species was drawn from the recently published monograph by Searle et al. (2019) "Shrews, Chromosomes and Speciation". The parallels to the law of homologous series in variation by Nikolai Vavilov are discussed.

3.
Mol Ecol ; 17(24): 5349-63, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19121002

RESUMO

Patterns of genetic differentiation among taxa at early stages of divergence provide an opportunity to make inferences about the history of speciation. Here, we conduct a survey of DNA-sequence polymorphism and divergence at loci on the autosomes, X chromosome, Y chromosome and mitochondrial DNA in samples of Mus domesticus, M. musculus and M. castaneus. We analyzed our data under a divergence with gene flow model and estimate that the effective population size of M. castaneus is 200,000-400,000, of M. domesticus is 100,000-200,000 and of M. musculus is 60,000-120,000. These data also suggest that these species started to diverge approximately 500,000 years ago. Consistent with this recent divergence, we observed considerable variation in the genealogical patterns among loci. For some loci, all alleles within each species formed a monophyletic group, while at other loci, species were intermingled on the phylogeny of alleles. This intermingling probably reflects both incomplete lineage sorting and gene flow after divergence. Likelihood ratio tests rejected a strict allopatric model with no gene flow in comparisons between each pair of species. Gene flow was asymmetric: no gene flow was detected into M. domesticus, while significant gene flow was detected into both M. castaneus and M. musculus. Finally, most of the gene flow occurred at autosomal loci, resulting in a significantly higher ratio of fixed differences to polymorphisms at the X and Y chromosomes relative to autosomes in some comparisons, or just the X chromosome in others, emphasizing the important role of the sex chromosomes in general and the X chromosome in particular in speciation.


Assuntos
Genes Mitocondriais , Genes Ligados ao Cromossomo X , Genes Ligados ao Cromossomo Y , Especiação Genética , Camundongos/genética , Alelos , Animais , DNA Mitocondrial/genética , Evolução Molecular , Fluxo Gênico , Genética Populacional , Funções Verossimilhança , Camundongos/classificação , Mitocôndrias/genética , Modelos Genéticos , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA , Especificidade da Espécie , Cromossomo X/genética , Cromossomo Y/genética
4.
Sci Rep ; 8(1): 14980, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297915

RESUMO

Remarkably stable genomic chromosome elements (evolutionary conserved segments or syntenies) are the basis of large-scale chromosome architecture in vertebrate species. However, these syntenic elements harbour evolutionary important changes through intrachromosomal rearrangements such as inversions and centromere repositioning. Here, using FISH with a set of 20 region-specific probes on a wide array of 28 species, we analyzed evolution of three conserved syntenic regions of the Arvicolinae ancestral karyotype. Inside these syntenies we uncovered multiple, previously cryptic intrachromosomal rearrangements. Although in each of the three conserved blocks we found inversions and centromere repositions, the blocks experienced different types of rearrangements. In two syntenies centromere repositioning predominated, while in the third region, paracentric inversions were more frequent, whereas pericentric inversions were not detected. We found that some of the intrachromosomal rearrangements, mainly paracentric inversions, were synapomorphic for whole arvicoline genera or tribes: genera Alexandromys and Microtus, tribes Ellobini and Myodini. We hypothesize that intrachromosomal rearrangements within conserved syntenic blocks are a major evolutionary force modulating genome architecture in species-rich and rapidly-evolving rodent taxa. Inversions and centromere repositioning may impact speciation and provide a potential link between genome evolution, speciation, and biogeography.


Assuntos
Arvicolinae/genética , Rearranjo Gênico/genética , Especiação Genética , Sintenia/genética , Animais , Coloração Cromossômica , Cromossomos de Mamíferos/genética , Evolução Molecular , Filogenia
5.
Genes (Basel) ; 8(9)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28867774

RESUMO

It has long been hypothesized that chromosomal rearrangements play a central role in different evolutionary processes, particularly in speciation and adaptation. Interchromosomal rearrangements have been extensively mapped using chromosome painting. However, intrachromosomal rearrangements have only been described using molecular cytogenetics in a limited number of mammals, including a few rodent species. This situation is unfortunate because intrachromosomal rearrangements are more abundant than interchromosomal rearrangements and probably contain essential phylogenomic information. Significant progress in the detection of intrachromosomal rearrangement is now possible, due to recent advances in molecular biology and bioinformatics. We investigated the level of intrachromosomal rearrangement in the Arvicolinae subfamily, a species-rich taxon characterized by very high rate of karyotype evolution. We made a set of region specific probes by microdissection for a single syntenic region represented by the p-arm of chromosome 1 of Alexandromys oeconomus, and hybridized the probes onto the chromosomes of four arvicolines (Microtus agrestis, Microtus arvalis, Myodes rutilus, and Dicrostonyx torquatus). These experiments allowed us to show the intrachromosomal rearrangements in the subfamily at a significantly higher level of resolution than previously described. We found a number of paracentric inversions in the karyotypes of M. agrestis and M. rutilus, as well as multiple inversions and a centromere shift in the karyotype of M. arvalis. We propose that during karyotype evolution, arvicolines underwent a significant number of complex intrachromosomal rearrangements that were not previously detected.

6.
Comp Cytogenet ; 14(3): 329-338, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754306
8.
PLoS One ; 8(7): e67455, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874420

RESUMO

Sorex araneus, the Common shrew, is a species with more than 70 karyotypic races, many of which form parapatric hybrid zones, making it a model for studying chromosomal speciation. Hybrids between races have reduced fitness, but microsatellite markers have demonstrated considerable gene flow between them, calling into question whether the chromosomal barriers actually do contribute to genetic divergence. We studied phenotypic clines across two hybrid zones with especially complex heterozygotes. Hybrids between the Novosibirsk and Tomsk races produce chains of nine and three chromosomes at meiosis, and hybrids between the Moscow and Seliger races produce chains of eleven. Our goal was to determine whether phenotypes show evidence of reduced gene flow at hybrid zones. We used maximum likelihood to fit tanh cline models to geometric shape data and found that phenotypic clines in skulls and mandibles across these zones had similar centers and widths as chromosomal clines. The amount of phenotypic differentiation across the zones is greater than expected if it were dissipating due to unrestricted gene flow given the amount of time since contact, but it is less than expected to have accumulated from drift during allopatric separation in glacial refugia. Only if heritability is very low, Ne very high, and the time spent in allopatry very short, will the differences we observe be large enough to match the expectation of drift. Our results therefore suggest that phenotypic differentiation has been lost through gene flow since post-glacial secondary contact, but not as quickly as would be expected if there was free gene flow across the hybrid zones. The chromosomal tension zones are confirmed to be partial barriers that prevent differentiated races from becoming phenotypically homogenous.


Assuntos
Cromossomos/genética , Fluxo Gênico/fisiologia , Hibridização Genética/fisiologia , Musaranhos/genética , Animais , Quimera/anatomia & histologia , Quimera/genética , Europa (Continente) , Deriva Genética , Especiação Genética , Tamanho do Órgão , Fenótipo , Federação Russa , Musaranhos/anatomia & histologia , Crânio/anatomia & histologia
9.
Evolution ; 66(3): 882-889, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22380446

RESUMO

Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones characterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.


Assuntos
Fluxo Gênico , Hibridização Genética , Cariótipo , Musaranhos/genética , Animais , Variação Genética
10.
Chromosome Res ; 15(3): 283-97, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17333534

RESUMO

The evolutionary success of rodents of the superfamily Muroidea makes this taxon the most interesting for evolution studies, including study at the chromosomal level. Chromosome-specific painting probes from the Chinese hamster and the Syrian (golden) hamster were used to delimit homologous chromosomal segments among 15 hamster species from eight genera: Allocricetulus, Calomyscus, Cricetulus, Cricetus, Mesocricetus, Peromyscus, Phodopus and Tscherskia (Cricetidae, Muroidea, Rodentia). Based on results of chromosome painting and G-banding, comparative maps between 20 rodent species have been established. The integrated maps demonstrate a high level of karyotype conservation among species in the Cricetus group (Cricetus, Cricetulus, Allocricetulus) with Tscherskia as its sister group. Species within the genera Mesocricetus and Phodopus also show a high degree of chromosomal conservation. Our results substantiate many of the conclusions suggested by other data and strengthen the topology of the Muroidea phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. The derivation of the muroids karyotypes from the putative ancestral state involved centric fusions, fissions, addition of heterochromatic arms and a great number of inversions. Our results provide further insights into the karyotype relationships of all species investigated.


Assuntos
Análise Citogenética/métodos , Filogenia , Animais , Bandeamento Cromossômico , Mapeamento Cromossômico , Coloração Cromossômica , Cricetinae , Cariotipagem , Mutagênese
11.
Mol Phylogenet Evol ; 33(3): 647-63, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15522793

RESUMO

Voles of the genus Microtus represent one of the most speciose mammalian genera in the Holarctic. We established a molecular phylogeny for Microtus to resolve contentious issues of systematic relationships and evolutionary history in this genus. A total of 81 specimens representing ten Microtus species endemic to Europe as well as eight Eurasian, six Asian and one Holarctic species were sequenced for the entire cytochrome b gene (1140 bp). A further 25 sequences were retrieved from GenBank, providing data on an additional 23, mainly Nearctic, Microtus species. Phylogenetic analysis of these 48 species generated four well-supported monophyletic lineages. The genus Chionomys, snow voles, formed a distinct and well-supported lineage separate from the genus Microtus. The subgenus Microtus formed the strongest supported lineage with two sublineages displaying a close relationship between the arvalis species group (common voles) and the socialis species group (social voles). Monophyly of the Palearctic pitymyid voles, subgenus Terricola, was supported, and this subgenus was also subdivided into two monophyletic species groups. Together, these groupings clarify long-standing taxonomic uncertainties in Microtus. In addition, the "Asian" and the Nearctic lineages reported previously were identified although the latter group was not supported. However, relationships among the main Microtus branches were not resolved, suggesting a rapid and potentially simultaneous radiation of a widespread ancestor early in the history of the genus. This and subsequent radiations discernible in the cytochrome b phylogeny, show the considerable potential of Microtus for analysis of historical and ecological determinants of speciation in small mammals. It is evident that speciation is an ongoing process in the genus and that the molecular data provides a vital insight into current species limits as well as cladogenic events of the past.


Assuntos
Arvicolinae/genética , DNA Mitocondrial/genética , Análise de Sequência de DNA , Animais , Citocromos b/genética , Evolução Molecular , Geografia , Funções Verossimilhança , Filogenia , Reação em Cadeia da Polimerase , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa