Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328438

RESUMO

FtsZ, the bacterial tubulin-homolog, plays a central role in cell division and polymerizes into a ring-like structure at midcell to coordinate other cell division proteins. The rod-shaped gamma-proteobacterium Candidatus Thiosymbion oneisti has a medial discontinuous ellipsoidal "Z-ring." Ca. T. oneisti FtsZ shows temperature-sensitive characteristics when it is expressed in Escherichia coli, where it localizes at midcell. The overexpression of Ca. T. oneisti FtsZ interferes with cell division and results in filamentous cells. In addition, it forms ring- and barrel-like structures independently of E. coli FtsZ, which suggests that the difference in shape and size of the Ca. T. oneisti FtsZ ring is likely the result of its interaction with Z-ring organizing proteins. Similar to some temperature-sensitive alleles of E. coli FtsZ, Ca. T. oneisti FtsZ has a weak GTPase and does not polymerize in vitro. The temperature sensitivity of Ca. Thiosymbion oneisti FtsZ is likely an adaptation to the preferred temperature of less than 30 °C of its host, the nematode Laxus oneistus.


Assuntos
Chromatiaceae , Proteínas de Escherichia coli , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Ligação Proteica , Temperatura
2.
Environ Microbiol ; 18(8): 2305-18, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27306428

RESUMO

As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes.


Assuntos
Fenômenos Fisiológicos Bacterianos , Eucariotos/fisiologia , Simbiose , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Humanos
3.
Immunol Cell Biol ; 93(9): 815-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25829141

RESUMO

Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígenos CD/imunologia , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Fagocitose/imunologia , Yersinia pestis/imunologia , Animais , Células Apresentadoras de Antígenos/microbiologia , Antígenos CD/metabolismo , Aderência Bacteriana/imunologia , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Camundongos , Antígenos O/imunologia , Antígenos O/metabolismo , Peste/imunologia , Peste/microbiologia , Ligação Proteica/imunologia , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Análise de Sobrevida , Yersinia pestis/metabolismo , Yersinia pestis/fisiologia
4.
Proc Natl Acad Sci U S A ; 108(29): 12078-83, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21709249

RESUMO

Harnessing chemosynthetic symbionts is a recurring evolutionary strategy. Eukaryotes from six phyla as well as one archaeon have acquired chemoautotrophic sulfur-oxidizing bacteria. In contrast to this broad host diversity, known bacterial partners apparently belong to two classes of bacteria--the Gamma- and Epsilonproteobacteria. Here, we characterize the intracellular endosymbionts of the mouthless catenulid flatworm genus Paracatenula as chemoautotrophic sulfur-oxidizing Alphaproteobacteria. The symbionts of Paracatenula galateia are provisionally classified as "Candidatus Riegeria galateiae" based on 16S ribosomal RNA sequencing confirmed by fluorescence in situ hybridization together with functional gene and sulfur metabolite evidence. 16S rRNA gene phylogenetic analysis shows that all 16 Paracatenula species examined harbor host species-specific intracellular Candidatus Riegeria bacteria that form a monophyletic group within the order Rhodospirillales. Comparing host and symbiont phylogenies reveals strict cocladogenesis and points to vertical transmission of the symbionts. Between 33% and 50% of the body volume of the various worm species is composed of bacterial symbionts, by far the highest proportion among all known endosymbiotic associations between bacteria and metazoans. This symbiosis, which likely originated more than 500 Mya during the early evolution of flatworms, is the oldest known animal-chemoautotrophic bacteria association. The distant phylogenetic position of the symbionts compared with other mutualistic or parasitic Alphaproteobacteria promises to illuminate the common genetic predispositions that have allowed several members of this class to successfully colonize eukaryote cells.


Assuntos
Evolução Biológica , Filogenia , Rhodospirillales/genética , Simbiose , Turbelários/microbiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Teorema de Bayes , Análise por Conglomerados , Primers do DNA/genética , Hibridização in Situ Fluorescente , Funções Verossimilhança , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Genéticos , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Rhodospirillales/ultraestrutura , Análise de Sequência de DNA , Especificidade da Espécie , Análise Espectral Raman , Turbelários/ultraestrutura
5.
Nat Commun ; 14(1): 2098, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055390

RESUMO

Much remains to be explored regarding the diversity of uncultured, host-associated microbes. Here, we describe rectangular bacterial structures (RBSs) in the mouths of bottlenose dolphins. DNA staining revealed multiple paired bands within RBSs, suggesting the presence of cells dividing along the longitudinal axis. Cryogenic transmission electron microscopy and tomography showed parallel membrane-bound segments that are likely cells, encapsulated by an S-layer-like periodic surface covering. RBSs displayed unusual pilus-like appendages with bundles of threads splayed at the tips. We present multiple lines of evidence, including genomic DNA sequencing of micromanipulated RBSs, 16S rRNA gene sequencing, and fluorescence in situ hybridization, suggesting that RBSs are bacterial and distinct from the genera Simonsiella and Conchiformibius (family Neisseriaceae), with which they share similar morphology and division patterning. Our findings highlight the diversity of novel microbial forms and lifestyles that await characterization using tools complementary to genomics such as microscopy.


Assuntos
Golfinho Nariz-de-Garrafa , Neisseriaceae , Animais , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Neisseriaceae/genética , Boca , Estruturas Bacterianas
6.
Sci Rep ; 12(1): 9725, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697683

RESUMO

Eukaryotes may experience oxygen deprivation under both physiological and pathological conditions. Because oxygen shortage leads to a reduction in cellular energy production, all eukaryotes studied so far conserve energy by suppressing their metabolism. However, the molecular physiology of animals that naturally and repeatedly experience anoxia is underexplored. One such animal is the marine nematode Laxus oneistus. It thrives, invariably coated by its sulfur-oxidizing symbiont Candidatus Thiosymbion oneisti, in anoxic sulfidic or hypoxic sand. Here, transcriptomics and proteomics showed that, whether in anoxia or not, L. oneistus mostly expressed genes involved in ubiquitination, energy generation, oxidative stress response, immune response, development, and translation. Importantly, ubiquitination genes were also highly expressed when the nematode was subjected to anoxic sulfidic conditions, together with genes involved in autophagy, detoxification and ribosome biogenesis. We hypothesize that these degradation pathways were induced to recycle damaged cellular components (mitochondria) and misfolded proteins into nutrients. Remarkably, when L. oneistus was subjected to anoxic sulfidic conditions, lectin and mucin genes were also upregulated, potentially to promote the attachment of its thiotrophic symbiont. Furthermore, the nematode appeared to survive oxygen deprivation by using an alternative electron carrier (rhodoquinone) and acceptor (fumarate), to rewire the electron transfer chain. On the other hand, under hypoxia, genes involved in costly processes (e.g., amino acid biosynthesis, development, feeding, mating) were upregulated, together with the worm's Toll-like innate immunity pathway and several immune effectors (e.g., bactericidal/permeability-increasing proteins, fungicides). In conclusion, we hypothesize that, in anoxic sulfidic sand, L. oneistus upregulates degradation processes, rewires the oxidative phosphorylation and reinforces its coat of bacterial sulfur-oxidizers. In upper sand layers, instead, it appears to produce broad-range antimicrobials and to exploit oxygen for biosynthesis and development.


Assuntos
Chromatiaceae , Nematoides , Animais , Cromadoria , Hipóxia , Nematoides/microbiologia , Oxigênio/metabolismo , Areia , Sulfetos , Enxofre/metabolismo
7.
iScience ; 25(1): 103552, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35059602

RESUMO

Less than a handful of cuboid and squared cells have been described in nature, which makes them a rarity. Here, we show how Candidatus Thiosymbion cuboideus, a cube-like gammaproteobacterium, reproduces on the surface of marine free-living nematodes. Immunostaining of symbiont cells with an anti-fimbriae antibody revealed that they are host-polarized, as these appendages exclusively localized at the host-proximal (animal-attached) pole. Moreover, by applying a fluorescently labeled metabolic probe to track new cell wall insertion in vivo, we observed that the host-attached pole started septation before the distal one. Similarly, Ca. T. cuboideus cells immunostained with an anti-FtsZ antibody revealed a proximal-to-distal localization pattern of this tubulin homolog. Although FtsZ has been shown to arrange into squares in synthetically remodeled cuboid cells, here we show that FtsZ may also mediate the division of naturally occurring ones. This implies that, even in natural settings, membrane roundness is not required for FtsZ function.

8.
Nat Commun ; 13(1): 4853, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995772

RESUMO

Rod-shaped bacteria typically elongate and divide by transverse fission. However, several bacterial species can form rod-shaped cells that divide longitudinally. Here, we study the evolution of cell shape and division mode within the family Neisseriaceae, which includes Gram-negative coccoid and rod-shaped species. In particular, bacteria of the genera Alysiella, Simonsiella and Conchiformibius, which can be found in the oral cavity of mammals, are multicellular and divide longitudinally. We use comparative genomics and ultrastructural microscopy to infer that longitudinal division within Neisseriaceae evolved from a rod-shaped ancestor. In multicellular longitudinally-dividing species, neighbouring cells within multicellular filaments are attached by their lateral peptidoglycan. In these bacteria, peptidoglycan insertion does not appear concentric, i.e. from the cell periphery to its centre, but as a medial sheet guillotining each cell. Finally, we identify genes and alleles associated with multicellularity and longitudinal division, including the acquisition of amidase-encoding gene amiC2, and amino acid changes in proteins including MreB and FtsA. Introduction of amiC2 and allelic substitution of mreB in a rod-shaped species that divides by transverse fission results in shorter cells with longer septa. Our work sheds light on the evolution of multicellularity and longitudinal division in bacteria, and suggests that members of the Neisseriaceae family may be good models to study these processes due to their morphological plasticity and genetic tractability.


Assuntos
Divisão Celular , Neisseriaceae , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Parede Celular/metabolismo , Mamíferos/microbiologia , Neisseriaceae/citologia , Peptidoglicano/metabolismo
9.
J Immunol ; 183(10): 6588-99, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19846880

RESUMO

Enterobacter sakazakii (ES) is an emerging pathogen that causes meningitis and necrotizing enterocolitis in infants. Dendritic cells (DCs) are professional phagocytic cells that play an essential role in host defense against invading pathogens; however, the interaction of ES with DCs is not known. In this study, we demonstrate that ES targets DC-specific ICAM nonintegrin (DC-SIGN) to survive in myeloid DCs for which outer membrane protein A (OmpA) expression in ES is critical, although it is not required for uptake. In addition, DC-SIGN expression was sufficient to cause a significant invasion by ES in HeLa cells and intestinal epithelial cells, which are normally not invaded by ES. OmpA(+) ES prevented the maturation of DCs by triggering the production of high levels of IL-10 and TGF-beta and by suppressing the activation of MAPKs. Pretreatment of DCs with Abs to IL-10 and TGF-beta or of bacteria with anti-OmpA Abs significantly enhanced the maturation markers on DCs. Furthermore, DCs pretreated with various inhibitors of MAPKs prohibited the increased production of proinflammatory cytokines stimulated by LPS or OmpA(-) ES. LPS pretreatment followed by OmpA(+) ES infection of DCs failed to induce maturation of DCs, indicating that OmpA(+) ES renders the cells in immunosuppressive state to external stimuli. Similarly, OmpA(+) ES-infected DCs failed to present Ag to T cells as indicated by the inability of T cells to proliferate in MLR. We conclude that ES interacts with DC-SIGN to subvert the host immune responses by disarming MAPK pathway in DCs.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Moléculas de Adesão Celular/imunologia , Cronobacter sakazakii/imunologia , Células Dendríticas/imunologia , Infecções por Enterobacteriaceae/imunologia , Lectinas Tipo C/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores de Superfície Celular/imunologia , Animais , Antracenos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Butadienos/farmacologia , Moléculas de Adesão Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Cronobacter sakazakii/ultraestrutura , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Flavonoides/farmacologia , Células HeLa , Humanos , Imidazóis/farmacologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Lectinas Tipo C/metabolismo , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Nitrilas/farmacologia , Piridinas/farmacologia , Ratos , Receptores de Superfície Celular/metabolismo , Transfecção , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
10.
Antibiotics (Basel) ; 10(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803189

RESUMO

Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-linkage of 67% but relatively short glycan chains with an average length of 12 disaccharides. Curiously, it has only two predicted endopeptidases, MepA and PBP4. Cellular localization of symbiont PBP4 by fluorescently labeled antibodies reveals its polar localization and its accumulation at the constriction sites, suggesting that PBP4 is involved in PG biosynthesis during septum formation. Isolated symbiont PBP4 protein shows a different selectivity for ß-lactams compared to its homologue from E. coli. Bocillin-FL binding by PBP4 is activated by some ß-lactams, suggesting the presence of an allosteric binding site. Overall, our data point to a role of PBP4 in PG cleavage during the longitudinal cell division and to a PG that might have been adapted to the symbiotic lifestyle.

11.
mSystems ; 6(3): e0118620, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34058098

RESUMO

Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on "Candidatus Thiosymbion oneisti." Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of 13C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that "Ca. T. oneisti" may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of "Candidatus Thiosymbion oneisti," a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont.

12.
Curr Biol ; 29(18): 3018-3028.e4, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31474535

RESUMO

All living organisms require accurate segregation of their genetic material. However, in microbes, chromosome segregation is less understood than replication and cell division, which makes its decipherment a compelling research frontier. Furthermore, it has only been studied in free-living microbes so far. Here, we investigated this fundamental process in a rod-shaped symbiont, Candidatus Thiosymbion oneisti. This gammaproteobacterium divides longitudinally as to form a columnar epithelium ensheathing its nematode host. We hypothesized that uninterrupted host attachment would affect bacterial chromosome dynamics and set out to localize specific chromosomal loci and putative DNA-segregating proteins by fluorescence in situ hybridization and immunostaining, respectively. First, DNA replication origins (ori) number per cell demonstrated symbiont monoploidy. Second, we showed that sister ori segregate diagonally prior to septation onset. Moreover, the localization pattern of the centromere-binding protein ParB recapitulates that of ori, and consistently, we showed recombinant ParB to specifically bind an ori-proximal site (parS) in vitro. Third, chromosome replication ends prior to cell fission, and as the poles start to invaginate, termination of replication (ter) sites localize medially, at the leading edges of the growing septum. They then migrate to midcell, concomitantly with septation progression and until this is completed. In conclusion, we propose that symbiont ParB might drive chromosome segregation along the short axis and that tethering of sister ter regions to the growing septum mediates their migration along the long axis. Crucially, active bidimensional segregation of the chromosome allows transgenerational maintenance of its configuration, and therefore, it may represent an adaptation to symbiosis. VIDEO ABSTRACT.


Assuntos
Chromatiaceae/genética , Segregação de Cromossomos/fisiologia , Orientação Espacial/fisiologia , Proteínas de Bactérias/genética , Divisão Celular/fisiologia , Centrômero/metabolismo , Segregação de Cromossomos/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA/genética , Gammaproteobacteria/genética , Hibridização in Situ Fluorescente/métodos , Origem de Replicação/genética
13.
Front Immunol ; 10: 96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915064

RESUMO

Yersinia pestis, a Gram-negative bacterium and the etiologic agent of plague, has evolved from Yersinia pseudotuberculosis, a cause of a mild enteric disease. However, the molecular and biological mechanisms of how Y. pseudotuberculosis evolved to such a remarkably virulent pathogen, Y. pestis, are not clear. The ability to initiate a rapid bacterial dissemination is a characteristic hallmark of Y. pestis infection. A distinguishing characteristic between the two Yersinia species is that Y. pseudotuberculosis strains possess an O-antigen of lipopolysaccharide (LPS) while Y. pestis has lost the O-antigen during evolution and therefore exposes its core LPS. In this study, we showed that Y. pestis utilizes its core LPS to interact with SIGNR1 (CD209b), a C-type lectin receptor on antigen presenting cells (APCs), leading to bacterial dissemination to lymph nodes, spleen and liver, and the initiation of a systemic infection. We therefore propose that the loss of O-antigen represents a critical step in the evolution of Y. pseudotuberculosis into Y. pestis in terms of hijacking APCs, promoting bacterial dissemination and causing the plague.


Assuntos
Moléculas de Adesão Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Lectinas Tipo C/imunologia , Lipopolissacarídeos/imunologia , Peste/imunologia , Receptores de Superfície Celular/imunologia , Yersinia pestis/fisiologia , Animais , Células Apresentadoras de Antígenos/imunologia , Moléculas de Adesão Celular/genética , Linhagem Celular , Feminino , Células HeLa , Humanos , Lectinas Tipo C/genética , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular/genética , Yersinia pseudotuberculosis/fisiologia , Infecções por Yersinia pseudotuberculosis/imunologia
14.
Infect Immun ; 76(5): 2070-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18285492

RESUMO

Yersinia pestis is the etiologic agent of bubonic and pneumonic plagues. It is speculated that Y. pestis hijacks antigen-presenting cells (APCs), such as dendritic cells (DCs) and alveolar macrophages, in order to be delivered to lymph nodes. However, how APCs initially capture the bacterium remains uncharacterized. It is well known that HIV-1 uses human DC-specific intercellular adhesion molecule-grabbing nonintegrin (DC-SIGN) (CD209) receptor, expressed by APCs, to be captured and delivered to target cell, such as CD4+ lymphocytes. Several gram-negative bacteria utilize their core lipopolysaccharides (LPS) as ligands to interact with the human DC-SIGN. Therefore, it is possible that Y. pestis, whose core LPS is naturally exposed, might exploit DC-SIGN to invade APCs. We demonstrate in this study that Y. pestis directly interacts with DC-SIGN and invades both DCs and alveolar macrophages. In contrast, when engineered to cover the core LPS, Y. pestis loses its ability to invade DCs, alveolar macrophages, and DC-SIGN-expressing transfectants. The interaction between Y. pestis and human DCs can be reduced by a combination treatment with anti-CD209 and anti-CD207 antibodies. This study shows that human DC-SIGN is a receptor for Y. pestis that promotes phagocytosis by DCs in vitro.


Assuntos
Moléculas de Adesão Celular/fisiologia , Células Dendríticas/imunologia , Lectinas Tipo C/fisiologia , Fagocitose , Receptores de Superfície Celular/fisiologia , Yersinia pestis/imunologia , Linhagem Celular , Células Cultivadas , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos Alveolares/microbiologia , Modelos Biológicos
15.
Curr Biol ; 28(7): 1039-1051.e5, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29576473

RESUMO

To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Nematoides/microbiologia , Peptidoglicano/metabolismo , Simbiose , Alphaproteobacteria/classificação , Alphaproteobacteria/metabolismo , Animais
16.
Nat Microbiol ; 3(8): 961, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29950696

RESUMO

In this Article, the completeness and number of contigs for draft genomes from two individuals of Laxus oneistus are incorrect in the main text, although the correct information is included in Table 1. The original and corrected versions of the relevant sentence are shown in the correction notice.

17.
Symbiosis ; 55(3): 127-135, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22448084
18.
FEMS Microbiol Ecol ; 92(2)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26839382

RESUMO

Be it their pervasiveness, experimental tractability or their impact on human health and agriculture, nematode-bacterium associations are far-reaching research subjects. Although the omics hype did not spare them and helped reveal mechanisms of communication and exchange between the associated partners, a huge amount of knowledge still awaits to be harvested from their study. Here, I summarize and compare the kind of research that has been already performed on the model nematode Caenorhabditis elegans and on symbiotic nematodes, both marine and entomopathogenic ones. The emerging picture highlights how complementing genetic studies with ecological ones (in the case of well-established genetic model systems such as C. elegans) and vice versa (in the case of the yet uncultured Stilbonematinae) will deepen our understanding of how microbial symbioses evolved and how they impact our environment.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Caenorhabditis elegans/microbiologia , Animais , Ecologia , Humanos , Simbiose
19.
Nat Microbiol ; 2: 16182, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27723729

RESUMO

The reproduction mode of uncultivable microorganisms deserves investigation as it can largely diverge from conventional transverse binary fission. Here, we show that the rod-shaped gammaproteobacterium thriving on the surface of the Robbea hypermnestra nematode divides by FtsZ-based, non-synchronous invagination of its poles-that is, the host-attached and fimbriae-rich pole invaginates earlier than the distal one. We conclude that, in a naturally occurring animal symbiont, binary fission is host-oriented and does not require native FtsZ to polymerize into a ring at any septation stage.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Gammaproteobacteria/fisiologia , Animais , Cromadoria/microbiologia , Gammaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/metabolismo
20.
Nat Microbiol ; 2: 16195, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775707

RESUMO

Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic symbiont was previously known to be capable of nitrogen fixation. We detected nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic habitats, where nitrogen availability often limits primary productivity.


Assuntos
Organismos Aquáticos/microbiologia , Bactérias/enzimologia , Bivalves/microbiologia , Cromadoria/microbiologia , Fixação de Nitrogênio , Simbiose , Animais , Bactérias/genética , Perfilação da Expressão Gênica , Nitrogenase/genética , Proteoma/análise , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa