Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(3): 1825-40, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24293367

RESUMO

Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.


Assuntos
Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sódio/metabolismo , Substituição de Aminoácidos , Asparagina/genética , Asparagina/metabolismo , Sítios de Ligação , Transporte Biológico Ativo/fisiologia , Dopamina/genética , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
2.
Bone Res ; 9(1): 49, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857734

RESUMO

In a previous transcriptomic study of human bone marrow stromal cells (BMSCs, also known as bone marrow-derived "mesenchymal stem cells"), SFRP2 was highly over-represented in a subset of multipotent BMSCs (skeletal stem cells, SSCs), which recreate a bone/marrow organ in an in vivo ectopic bone formation assay. SFRPs modulate WNT signaling, which is essential to maintain skeletal homeostasis, but the specific role of SFRP2 in BMSCs/SSCs is unclear. Here, we evaluated Sfrp2 deficiency on BMSC/SSC function in models of skeletal organogenesis and regeneration. The skeleton of Sfrp2-deficient (KO) mice is overtly normal; but their BMSCs/SSCs exhibit reduced colony-forming efficiency, reflecting low SSC self-renewal/abundancy. Sfrp2 KO BMSCs/SSCs formed less trabecular bone than those from WT littermates in the ectopic bone formation assay. Moreover, regeneration of a cortical drilled hole defect was dramatically impaired in Sfrp2 KO mice. Sfrp2-deficient BMSCs/SSCs exhibited poor in vitro osteogenic differentiation as measured by Runx2 and Osterix expression and calcium accumulation. Interestingly, activation of the Wnt co-receptor, Lrp6, and expression of Wnt target genes, Axin2, C-myc and Cyclin D1, were reduced in Sfrp2-deficient BMSCs/SSCs. Addition of recombinant Sfrp2 restored most of these activities, suggesting that Sfrp2 acts as a Wnt agonist. We demonstrate that Sfrp2 plays a role in self-renewal of SSCs and in the recruitment and differentiation of adult SSCs during bone healing. SFRP2 is also a useful marker of BMSC/SSC multipotency, and a factor to potentially improve the quality of ex vivo expanded BMSC/SSC products.

3.
Front Physiol ; 2: 59, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21941513

RESUMO

Twisted gastrulation (TWSG1) is a conserved, secreted glycoprotein that modulates signaling of bone morphogenetic proteins (BMPs) in the extracellular space. Deletion of exon 4 of mouse Twsg1 (mTwsg1) is associated with significant craniofacial defects. However, little is understood about the biochemical properties of the corresponding region of the protein. We have uncovered a significant role for exon 4 sequences as encoding the only two glycosylation sites of the mTWSG1 protein. Deletion of the entire exon 4 or mutation of both glycosylation sites within exon 4 abolishes glycosylation of mTWSG1. Importantly, we find that constructs with mutated glycosylation sites have significantly reduced BMP binding activity. We further show that glycosylation and activity of TWSG1 recombinant proteins vary markedly by cellular source. Non-glycosylated mTWSG1 made in E. coli has both reduced affinity for BMPs, as shown by surface plasmon resonance analysis, and reduced BMP inhibitory activity in a mandibular explant culture system compared to glycosylated proteins made in insect cells or murine myeloma cells. This study highlights an essential role for glycosylation in Twisted gastrulation action.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa