Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 295(23): 7849-7864, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32317279

RESUMO

Activation of the T cell receptor (TCR) results in binding of the adapter protein Nck (noncatalytic region of tyrosine kinase) to the CD3ϵ subunit of the TCR. The interaction was suggested to be important for the amplification of TCR signals and is governed by a proline-rich sequence (PRS) in CD3ϵ that binds to the first Src homology 3 (SH3) domain of Nck (Nck-SH3.1). Inhibition of this protein/protein interaction ameliorated inflammatory symptoms in mouse models of multiple sclerosis, psoriasis, and asthma. A small molecule, AX-024, was reported to inhibit the Nck/CD3ϵ interaction by physically binding to the Nck1-SH3.1 domain, suggesting a route to develop an inhibitor of the Nck1/CD3ϵ interaction for modulating TCR activity in autoimmune and inflammatory diseases. We show here that AX-024 reduces T cell proliferation upon weak TCR stimulation but does not significantly affect phosphorylation of Zap70 (ζ chain of T cell receptor-associated protein kinase 70). We also find that AX-024 is likely not involved in modulating the Nck/TCR interaction but probably has other targets in T cells. An array of biophysical techniques did not detect a direct interaction between AX-024 and Nck-SH3.1 in vitro Crystal structures of the Nck-SH3.1 domain revealed its binding mode to the PRS in CD3ϵ. The SH3 domain tends to generate homodimers through a domain swap. Domain swaps observed previously in other SH3 domains indicate a general propensity of this protein fold to exchange structural elements. The swapped form of Nck-SH3.1 is unable to bind CD3ϵ, possibly representing an inactive form of Nck in cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo CD3/metabolismo , Proteínas Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Linfócitos T/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Células Jurkat , Modelos Moleculares , Domínios de Homologia de src
2.
J Biol Chem ; 291(31): 16292-306, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27226599

RESUMO

Doublecortin is a microtubule-associated protein produced during neurogenesis. The protein stabilizes microtubules and stimulates their polymerization, which allows migration of immature neurons to their designated location in the brain. Mutations in the gene that impair doublecortin function and cause severe brain formation disorders are located on a tandem repeat of two doublecortin domains. The molecular mechanism of action of doublecortin is only incompletely understood. Anti-doublecortin antibodies, such as the rabbit polyclonal Abcam 18732, are widely used as neurogenesis markers. Here, we report the generation and characterization of antibodies that bind to single doublecortin domains. The antibodies were used as tools to obtain structures of both domains. Four independent crystal structures of the N-terminal domain reveal several distinct open and closed conformations of the peptide linking N- and C-terminal domains, which can be related to doublecortin function. An NMR assignment and a crystal structure in complex with a camelid antibody fragment show that the doublecortin C-terminal domain adopts the same well defined ubiquitin-like fold as the N-terminal domain, despite its reported aggregation and molten globule-like properties. The antibodies' unique domain specificity also renders them ideal research tools to better understand the role of individual domains in doublecortin function. A single chain camelid antibody fragment specific for the C-terminal doublecortin domain affected microtubule binding, whereas a monoclonal mouse antibody specific for the N-terminal domain did not. Together with steric considerations, this suggests that the microtubule-interacting doublecortin domain observed in cryo-electron micrographs is the C-terminal domain rather than the N-terminal one.


Assuntos
Anticorpos Monoclonais Murinos/química , Proteínas Associadas aos Microtúbulos/química , Neuropeptídeos/química , Anticorpos de Cadeia Única/química , Animais , Camelus , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas do Domínio Duplacortina , Humanos , Camundongos , Domínios Proteicos , Estrutura Quaternária de Proteína , Coelhos
4.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1124-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695257

RESUMO

The aspartic protease BACE2 is responsible for the shedding of the transmembrane protein Tmem27 from the surface of pancreatic ß-cells, which leads to inactivation of the ß-cell proliferating activity of Tmem27. This role of BACE2 in the control of ß-cell maintenance suggests BACE2 as a drug target for diabetes. Inhibition of BACE2 has recently been shown to lead to improved control of glucose homeostasis and to increased insulin levels in insulin-resistant mice. BACE2 has 52% sequence identity to the well studied Alzheimer's disease target enzyme ß-secretase (BACE1). High-resolution BACE2 structures would contribute significantly to the investigation of this enzyme as either a drug target or anti-target. Surface mutagenesis, BACE2-binding antibody Fab fragments, single-domain camelid antibody VHH fragments (Xaperones) and Fyn-kinase-derived SH3 domains (Fynomers) were used as crystallization helpers to obtain the first high-resolution structures of BACE2. Eight crystal structures in six different packing environments define an ensemble of low-energy conformations available to the enzyme. Here, the different strategies used for raising and selecting BACE2 binders for cocrystallization are described and the crystallization success, crystal quality and the time and resources needed to obtain suitable crystals are compared.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Fragmentos Fab das Imunoglobulinas/química , Células Secretoras de Insulina/enzimologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Área Sob a Curva , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Domínio Catalítico , Cristalização , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Modelos Moleculares , Mutagênese , Conformação Proteica , Ressonância de Plasmônio de Superfície , Difração de Raios X
5.
J Med Chem ; 65(19): 13052-13073, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36178776

RESUMO

Addressing resistance to third-generation EGFR TKIs such as osimertinib via the EGFRC797S mutation remains a highly unmet need in EGFR-driven non-small-cell lung cancer (NSCLC). Herein, we present the discovery of the allosteric EGFR inhibitor 57, a novel fourth-generation inhibitor to overcome EGFRC797S-mediated resistance in patients harboring the activating EGFRL858R mutation. 57 exhibits an improved potency compared to previous allosteric EGFR inhibitors. To our knowledge, 57 is the first allosteric EGFR inhibitor that demonstrates robust tumor regression in a mutant EGFRL858R/C797S tumor model. Additionally, 57 is active in an H1975 EGFRL858R/T790M NSCLC xenograft model and shows superior efficacy in combination with osimertinib compared to the single agents. Our data highlight the potential of 57 as a single agent against EGFRL858R/C797S and EGFRL858R/T790M/C797S and as combination therapy for EGFRL858R- and EGFRL858R/T790M-driven NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Acrilamidas , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Humanos , Indóis , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas
6.
ACS Chem Biol ; 14(1): 37-49, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452219

RESUMO

The importance of Discoidin Domain Receptor 1 (DDR1) in renal fibrosis has been shown via gene knockout and use of antisense oligonucleotides; however, these techniques act via a reduction of DDR1 protein, while we prove the therapeutic potential of inhibiting DDR1 phosphorylation with a small molecule. To date, efforts to generate a selective small-molecule to specifically modulate the activity of DDR1 in an in vivo model have been unsuccessful. We performed parallel DNA encoded library screens against DDR1 and DDR2, and discovered a chemical series that is highly selective for DDR1 over DDR2. Structure-guided optimization efforts yielded the potent DDR1 inhibitor 2.45, which possesses excellent kinome selectivity (including 64-fold selectivity over DDR2 in a biochemical assay), a clean in vitro safety profile, and favorable pharmacokinetic and physicochemical properties. As desired, compound 2.45 modulates DDR1 phosphorylation in vitro as well as prevents collagen-induced activation of renal epithelial cells expressing DDR1. Compound 2.45 preserves renal function and reduces tissue damage in Col4a3-/- mice (the preclinical mouse model of Alport syndrome) when employing a therapeutic dosing regime, indicating the real therapeutic value of selectively inhibiting DDR1 phosphorylation in vivo. Our results may have wider significance as Col4a3-/- mice also represent a model for chronic kidney disease, a disease which affects 10% of the global population.


Assuntos
DNA/genética , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Rim/fisiopatologia , Nefrite Hereditária/genética , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Testes de Função Renal , Camundongos , Camundongos Knockout , Nefrite Hereditária/fisiopatologia , Fosforilação , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
7.
Acta Crystallogr D Struct Biol ; 74(Pt 5): 450-462, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717716

RESUMO

Doublecortin, a microtubule-associated protein that is only produced during neurogenesis, cooperatively binds to microtubules and stimulates microtubule polymerization and cross-linking by unknown mechanisms. A domain swap is observed in the crystal structure of the C-terminal domain of doublecortin. As determined by analytical ultracentrifugation, an open conformation is also present in solution. At higher concentrations, higher-order oligomers of the domain are formed. The domain swap and additional interfaces observed in the crystal lattice can explain the formation of doublecortin tetramers or multimers, in line with the analytical ultracentrifugation data. Taken together, the domain swap offers a mechanism for the observed cooperative binding of doublecortin to microtubules. Doublecortin-induced cross-linking of microtubules can be explained by the same mechanism. The effect of several mutations leading to lissencephaly and double-cortex syndrome can be traced to the domain swap and the proposed self-association of doublecortin.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Neuropeptídeos/química , Domínios Proteicos , Cristalografia por Raios X , Proteínas do Domínio Duplacortina , Humanos , Lisencefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mutação , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Conformação Proteica , Multimerização Proteica , Ubiquitina/química , Ultracentrifugação
8.
J Med Chem ; 58(20): 8054-65, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26403853

RESUMO

Inappropriately high levels of aldosterone are associated with many serious medical conditions, including renal and cardiac failure. A focused screen hit has been optimized into a potent and selective aldosterone synthase (CYP11B2) inhibitor with in vitro activity against rat, mouse, human, and cynomolgus monkey enzymes, showing a selectivity factor of 160 against cytochrome CYP11B1 in the last species. The novel tetrahydroisoquinoline compound (+)-(R)-6 selectively reduced aldosterone plasma levels in vivo in a dose-dependent manner in db/db mice and cynomolgus monkeys. The selectivity against CYP11B1 as predicted by cellular inhibition data and free plasma fraction translated well to Synacthen challenged cynomolgus monkeys up to a dose of 0.1 mg kg(-1). This compound, displaying good in vivo potency and selectivity in mice and monkeys, is ideally suited to perform mechanistic studies in relevant rodent models and to provide the information necessary for translation to non-human primates and ultimately to man.


Assuntos
Citocromo P-450 CYP11B2/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Antagonistas de Receptores de Mineralocorticoides/síntese química , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/farmacologia , Aldosterona/sangue , Animais , Desenho de Fármacos , Descoberta de Drogas , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos DBA , Modelos Moleculares , Ratos
9.
Vet J ; 199(1): 68-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24152383

RESUMO

The mode of inheritance for susceptibility to equine sarcoid disease (ES) remains unknown. The objectives of this study were to analyse a large sample of the Franches-Montagnes (FM) horse population and investigate the heritability and mode of inheritance for susceptibility to ES. Horses were clinically examined for the presence of sarcoid tumours. A standardized examination protocol and client questionnaire were used and a pedigree- and subsequent segregation-analysis for the ES trait performed. To investigate the mode of inheritance, five models were evaluated and compared in a hierarchical way. The analyses reveal that variation in susceptibility to ES is best explained by a model incorporating polygenic variation. The possible effect of a major gene, such as specific equine leukocyte antigen alleles, is unlikely, but cannot be ruled-out entirely. The heritability of the phenotype on the observation scale for the trait 'affected with ES' was estimated to be 8%. A corrected value for the heritability on a liability scale was estimated at 21% and it is therefore possible to estimate breeding values for ES. The arguments against the practical implementation of an estimated breeding value in a multifactorial condition like ES are discussed.


Assuntos
Doenças dos Cavalos/genética , Sarcoidose/veterinária , Neoplasias Cutâneas/veterinária , Animais , Predisposição Genética para Doença , Cavalos , Sarcoidose/genética , Neoplasias Cutâneas/genética
10.
J Mol Biol ; 395(3): 568-77, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19913032

RESUMO

Mifepristone is known to induce mixed passive antagonist, active antagonist, and agonist effects via the glucocorticoid receptor (GR) pathway. Part of the antagonist effects of mifepristone are due to the repression of gene transcription mediated by the nuclear receptor corepressor (NCoR). Here, we report the crystal structure of a ternary complex of the GR ligand binding domain (GR-LBD) with mifepristone and a receptor-interacting motif of NCoR. The structures of three different conformations of the GR-LBD mifepristone complex show in the oxosteroid hormone receptor family how helix 12 modulates LBD corepressor and coactivator binding. Differences in NCoR binding and in helix 12 conformation reveal how the 11beta substituent in mifepristone triggers the helix 12 molecular switch to reshape the coactivator site into the corepressor site. Two observed conformations exemplify the active antagonist state of GR with NCoR bound. In another conformation, helix 12 completely blocks the coregulator binding site and explains the passive antagonistic effect of mifepristone on GR.


Assuntos
Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas Correpressoras/química , Proteínas Correpressoras/genética , Cristalografia por Raios X , Antagonistas de Hormônios/farmacologia , Humanos , Técnicas In Vitro , Ligantes , Substâncias Macromoleculares , Mifepristona/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Eletricidade Estática , Termodinâmica
11.
Appl Environ Microbiol ; 68(4): 1907-13, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11916711

RESUMO

For industrial applications in animal feed, a phytase of interest must be optimally active in the pH range prevalent in the digestive tract. Therefore, the present investigation describes approaches to rationally engineer the pH activity profiles of Aspergillus fumigatus and consensus phytases. Decreasing the negative surface charge of the A. fumigatus Q27L phytase mutant by glycinamidylation of the surface carboxy groups (of Asp and Glu residues) lowered the pH optimum by ca. 0.5 unit but also resulted in 70 to 75% inactivation of the enzyme. Alternatively, detailed inspection of amino acid sequence alignments and of experimentally determined or homology modeled three-dimensional structures led to the identification of active-site amino acids that were considered to correlate with the activity maxima at low pH of A. niger NRRL 3135 phytase, A. niger pH 2.5 acid phosphatase, and Peniophora lycii phytase. Site-directed mutagenesis confirmed that, in A. fumigatus wild-type phytase, replacement of Gly-277 and Tyr-282 with the corresponding residues of A. niger phytase (Lys and His, respectively) gives rise to a second pH optimum at 2.8 to 3.4. In addition, the K68A single mutation (in both A. fumigatus and consensus phytase backbones), as well as the S140Y D141G double mutation (in A. fumigatus phytase backbones), decreased the pH optima with phytic acid as substrate by 0.5 to 1.0 unit, with either no change or even a slight increase in maximum specific activity. These findings significantly extend our tools for rationally designing an optimal phytase for a given purpose.


Assuntos
6-Fitase , Aspergillus fumigatus/enzimologia , Engenharia Genética/métodos , 6-Fitase/química , 6-Fitase/genética , 6-Fitase/metabolismo , Sequência de Aminoácidos , Aspergillus fumigatus/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa