Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Behav Pharmacol ; 31(4): 407-412, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32040016

RESUMO

Depression is considered a common mental disorder that affects more than 300 million people worldwide. Despite this high incidence, its etiology is not completely elucidated instigating further studies. For this purpose, different animal models are used to study routes and molecular changes involved in depression, among them the chronic administration of corticosterone. However, the knowledge about neurochemical changes after this protocol is still controversial. In this work, we evaluated serum corticosterone levels, adrenal/body weight ratio, as well as glucocorticoid receptor and brain-derived neurotrophic factor protein expression and its receptor, tropomyosin-receptor kinase B. These analyzes were performed on prefrontal cortex, hippocampus, and striatum samples taken of mice after 21 days of administration of corticosterone. Exposure to corticosterone reduced the serum corticosterone levels and the adrenal/body weight ratio. Moreover, the glucocorticoid receptor and tyrosine-receptor kinase B expression were increased in the hippocampus while the brain-derived neurotrophic factor expression was reduced in the prefrontal cortex. We also found a positive correlation between the expression of glucocorticoid receptor and tyrosine-receptor kinase B and our results suggest a possible relationship between the glucocorticoid/glucocorticoid receptor and brain-derived neurotrophic factor/tropomyosin-receptor kinase B routes after chronic corticosterone administration. To our knowledge, this is the first study that evaluate these parameters concomitantly in important mood-related structures. In addition, these results may be useful to other research groups seeking to explore new pathways and substances with therapeutic potential to treat this silent epidemic.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Corticosterona/efeitos adversos , Depressão/induzido quimicamente , Glândulas Suprarrenais/fisiologia , Animais , Peso Corporal/fisiologia , Corpo Estriado/metabolismo , Corticosterona/sangue , Depressão/sangue , Hipocampo/metabolismo , Masculino , Camundongos , Córtex Pré-Frontal/metabolismo , Receptor trkB/biossíntese , Receptores de Glucocorticoides/biossíntese
2.
Hippocampus ; 27(2): 210-220, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27874237

RESUMO

Recent studies have shown that tactile stimulation (TS) in pups is able to prevent and/or minimize fear, anxiety behaviors, and addiction to psychostimulant drugs in adult rats. In these studies, animals have been exposed to handling from postnatal day (PND) 1-21. This study was designed to precisely establish which period of preweaning development has a greater influence of TS on neuronal development. After birth, male pups were exposed to TS from PND1-7, PND8-14, and PND15-21. In adulthood, the different periods of postnatal TS were assessed through behavioral, biochemical, and molecular assessments. Animals that received TS from PND8-14 showed lower anxiety-like symptoms, as observed by decreased anxiety index in elevated plus maze. This same TS period was able to improve rats' working memory by increasing the percentage of alternation rate in Y-maze, and induce better ability to cope with stressful situations, as showed in the defensive burying test by a reduced time of burying behavior. On the other hand, animals receiving TS in the first week of life showed longest cumulative burying time, which is directly related to increased anxiety-like behavior. Moreover, TS from PND8-14 showed lower corticosterone levels and better oxidative status, as observed by decreased lipid peroxidation and increased catalase activity in the hippocampus. Brain-derived neurotrophic factor (BDNF) immunocontent was increased in the hippocampus of animals receiving TS from PND8-14, while glucocorticoid receptors immunocontent was decreased in both TS1-7 and TS15-21 , but not TS8-14 . To the best of our knowledge, this study is the first to show TS can be more efficient if applied over a focused period of neonatal development (PND8-14) and this beneficial influence can be reflected on reduced emotionality and increased ability to address stressful situations in adulthood. © 2016 Wiley Periodicals, Inc.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Manobra Psicológica , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Receptores de Glucocorticoides/metabolismo , Tato , Adaptação Psicológica/fisiologia , Animais , Animais Recém-Nascidos , Ansiedade/metabolismo , Catalase/metabolismo , Corticosterona/sangue , Comportamento Exploratório/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Atividade Motora/fisiologia , Estimulação Física , Distribuição Aleatória , Ratos Wistar , Método Simples-Cego
3.
Hippocampus ; 25(5): 556-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25394793

RESUMO

Recently, we have described the influence of dietary fatty acids (FA) on mania-like behavior of first generation animals. Here, two sequential generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy and during lactation. In adulthood, half of each group was exposed to an amphetamine (AMPH)-induced mania animal model for behavioral, biochemical and molecular assessments. FO supplementation was associated with lower reactive species (RS) generation and protein carbonyl (PC) levels and increased dopamine transporter (DAT) levels, while HVF increased RS and PC levels, thus decreasing catalase (CAT) activity and DAT levels in hippocampus after AMPH treatment. AMPH impaired short- (1 h) and long- (24 h) term memory in the HVF group. AMPH exposure was able to reduce hippocampal BDNF- mRNA expression, which was increased in FO. While HVF was related to higher trans FA (TFA) incorporation in hippocampus, FO was associated with increased percentage of n-3 polyunsaturated FA (PUFA) together with lower n-6/n-3 PUFA ratio. Interestingly, our data showed a positive correlation between brain-derived neurotrophic factor (BDNF) mRNA and short- and long-term memory (r(2) = 0.53; P = 0.000/r(2) = 0.32; P = 0.011, respectively), as well as a negative correlation between PC and DAT levels (r(2) = 0.23; P = 0.015). Our findings confirm that provision of n-3 or TFA during development over two generations is able to change the neuronal membrane lipid composition, protecting or impairing the hippocampus, respectively, thus affecting neurothrophic factor expression such as BDNF mRNA. In this context, chronic consumption of trans fats over two generations can facilitate the development of mania-like behavior, so leading to memory impairment and emotionality, which are related to neuropsychiatric conditions.


Assuntos
Transtorno Bipolar/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/metabolismo , Ácidos Graxos trans/toxicidade , Animais , Transtorno Bipolar/psicologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Óleos de Peixe/toxicidade , Lactação , Masculino , Transtornos da Memória/metabolismo , Gravidez , Ratos Wistar , Reconhecimento Psicológico/fisiologia , Óleo de Soja/toxicidade , Produtos Vegetais/toxicidade
4.
J Nanosci Nanotechnol ; 15(1): 800-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328444

RESUMO

In previous works, we developed nanocapsules and nanoemulsions containing the tea tree oil. The aim of this work was to prepare and characterize hydrogels containing these nanocarriers, and to evaluate their in vivo efficacy in protecting skin damage induced by UVB and cutaneous wound healing. Hydrogels were prepared using Carbopol Ultrez and their physicochemical characteristics were evaluated: macroscopic analysis, pH, spreadability and rheological properties. The in vivo antiedematogenic effect was evaluated by ear thickness measurement after UVB-irradiation. In order to evaluate healing action of hydrogels, we investigated the regression of the cutaneous lesion in rats. Hydrogels showed homogeneous aspect and pH values between 5.6-5.8 and a non-Newtonian behavior. The presence of nanocapsules and nanoemulsions in hydrogels did not change their spreadability profile. The inclusion of tea tree oil in the nanocapsules and nanoemulsions allowed reducing the edema induced by UVB exposure. Hydrogel containing nanocapsules presented a higher reduction of the wound area compared to the hydrogel containing nanoemulsions and hydrogel containing allantoin. This study shows the feasibility of obtained dermatological formulations containing the tea tree oil associated in nanostructured systems. These formulations represent a promising approach to topical treatment of inflammatory disorders and wound healing.


Assuntos
Hidrogéis/farmacologia , Nanocápsulas/química , Substâncias Protetoras/farmacologia , Pele/efeitos dos fármacos , Óleo de Melaleuca/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios , Edema , Hidrogéis/química , Masculino , Substâncias Protetoras/química , Ratos , Ratos Wistar , Pele/lesões , Pele/fisiopatologia , Óleo de Melaleuca/química
5.
Vet Anaesth Analg ; 41(6): 621-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24628858

RESUMO

OBJECTIVE: The present study describes the isolation of linalool from the essential oil of Lippia alba (Mill.) N. E. Brown, and its anesthetic effect in silver catfish (Rhamdia quelen) in comparison with essential oil. The potentiation of depressant effects of linalool with a benzodiazepine (BDZ) and the involvement of GABAergic system in its antagonism by flumazenil were also evaluated. STUDY DESIGN: Prospective experimental study. ANIMALS: Juvenile silver catfish unknown sex weighing mean 9.24 ± 2.83 g (n = 6 for each experimental group per experiment). METHODS: Column chromatography was used for the isolation of S-(+)-linalool. Fish (n = 6 for each concentration) were transferred to aquaria with linalool (30, 60, and 180 µL L(-1)) or EO of L. alba (50, 100, and 300 µL L(-1)) to determine the induction time for anesthesia. After induction, the animals were transferred to anesthetic-free aquaria to assess their recovery time. To observe the potentiation, fish were exposed to linalool (30, 60, and 180 µL L(-1)) in the presence or absence of BDZ (diazepam 150 µm). In another experiment, fish exposed to linalool (30 and 180 µL L(-1) or BDZ were transferred to an anesthetic-free aquaria containing flumazenil (5 µm) or water to assess recovery time. RESULTS: Linalool had a similar sedation profile to the essential oil at a proportional concentration in silver catfish. However, the anesthesia profile was different. Potentiation of linalool effect occurred only when tested at low concentration. Fish exposed to BDZ showed faster anesthesia recovery in water with flumazenil, but the same did not occur with linalool. CONCLUSIONS AND CLINICAL RELEVANCE: The use of linalool as a sedative and anesthetic for silver catfish was effective at 30 and 180 µL L(-1), respectively. The mechanism of action seems not to involve the benzodiazepine site of the GABAergic system.


Assuntos
Anestesia/veterinária , Peixes-Gato , Hipnóticos e Sedativos/farmacologia , Lippia/química , Monoterpenos/farmacologia , Monoterpenos Acíclicos , Anestesia/métodos , Anestésicos/isolamento & purificação , Anestésicos/farmacologia , Animais , Sistema Nervoso Central/efeitos dos fármacos , Diazepam/farmacologia , Flumazenil/farmacologia , Hipnóticos e Sedativos/isolamento & purificação , Monoterpenos/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/farmacologia
6.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1535-1545, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36790483

RESUMO

Morphine is among the most powerful analgesics and pain-relieving agents. However, its addictive properties limit their medical use because patients may be susceptible to abuse and reinstatement. Morphine addiction occurs because of dopamine release in the mesolimbic brain area, implying in an increase in oxidative stress. Ferulic acid (FA), a phenolic phytochemical found in a variety of foods, has been reported to exert antioxidant and neuroprotective effects; however, its low bioavailability makes its nano-encapsulated form a promising alternative. This study aimed to evaluate the protective effects of a novel nanosystem with FA on morphine reinstatement and the consequent molecular neuroadaptations and oxidative status in the mesolimbic region. Rats previously exposed to morphine in conditioned place preference (CPP) paradigm were treated with ferulic acid-loaded nanocapsules (FA-Nc) or nonencapsulated FA during morphine-preference extinction. Following the treatments, animals were re-exposed to morphine to induce the reinstatement. While morphine-preference extinction was comparable among all experimental groups, FA-Nc treatment prevented morphine reinstatement. In the dorsal striatum, while morphine exposure increased lipid peroxidation (LP) and reactive species (RS), FA-Nc decreased LP and FA decreased RS levels. Morphine exposure increased the dopaminergic markers (D1R, D3R, DAT) and ΔFosB immunoreactivity in the ventral striatum; however, FA-Nc treatment decreased D1R, D3R, and ΔFosB and increased D2R, DAT, and NRF2. In conclusion, FA-Nc treatment prevented the morphine reinstatement, promoted antioxidant activity, and modified the dopaminergic neurotransmission, NRF2, and ΔFosB, what may indicate a neuroprotective and antioxidant role of this nanoformulation.


Assuntos
Dopamina , Morfina , Ratos , Animais , Morfina/farmacologia , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Encéfalo
7.
Neurochem Int ; 150: 105157, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390773

RESUMO

Besides their clinical application, chronic misuse of opioids has often been associated to drug addiction due to their addictive properties, underlying neuroadaptations of AMPA glutamate-receptor-dependent synaptic plasticity. Topiramate (TPM), an AMPAR antagonist, has been used to treat psychostimulants addiction, despite its harmful effects on memory. This study aimed to evaluate the effects of a novel topiramate nanosystem on molecular changes related to morphine reinstatement. Rats were previously exposed to morphine in conditioned place preference (CPP) paradigm and treated with topiramate-chitosan nanoparticles (TPM-CS-NP) or non-encapsulated topiramate in solution (S-TPM) during CPP extinction; following memory performance evaluation, they were re-exposed to morphine reinstatement. While morphine-CPP extinction was comparable among all experimental groups, TPM-CS-NP treatment prevented morphine reinstatement, preserving memory performance, which was impaired by both morphine-conditioning and S-TPM treatment. In the NAc, morphine increased D1R, D2R, D3R, DAT, GluA1 and MOR immunoreactivity. It also increased D1R, DAT, GluA1 and MOR in the dorsal hippocampus. TPM-CS-NP treatment decreased D1R, D3R and GluA1 and increased DAT in the NAc, decreasing GluA1 and increasing D2 and DAT in the dorsal hippocampus. Taken together, we may infer that TPM-CS-NP treatment was able to prevent the morphine reinstatement without memory impairment. Therefore, TPM-CS-NP may be considered an innovative therapeutic tool due to its property to prevent opioid reinstatement because it acts modifying both dopaminergic and glutamatergic neurotransmission, which are commonly related to morphine addiction.


Assuntos
Quitosana/administração & dosagem , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Dependência de Morfina/metabolismo , Nanopartículas/administração & dosagem , Topiramato/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Quimioterapia Combinada , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Morfina/farmacologia , Dependência de Morfina/prevenção & controle , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores Dopaminérgicos/metabolismo
9.
Front Behav Neurosci ; 14: 142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903627

RESUMO

The serotonin transporter (SERT) gene, especially the short allele of the human serotonin transporter linked polymorphic region (5-HTTLPR), has been associated with the development of stress-related neuropsychiatric disorders. In line, exposure to early life stress in SERT knockout animals contributes to anxiety- and depression-like behavior. However, there is a lack of investigation of how early-life exposure to beneficial stimuli, such as tactile stimulation (TS), affects later life behavior in these animals. In this study, we investigated the effect of TS on social, anxiety, and anhedonic behavior in heterozygous SERT knockouts rats and wild-type controls and its impact on gene expression in the basolateral amygdala. Heterozygous SERT+/- rats were submitted to TS during postnatal days 8-14, for 10 min per day. In adulthood, rats were assessed for social and affective behavior. Besides, brain-derived neurotrophic factor (Bdnf) gene expression and its isoforms, components of glutamatergic and GABAergic systems as well as glucocorticoid-responsive genes were measured in the basolateral amygdala. We found that exposure to neonatal TS improved social and affective behavior in SERT+/- animals compared to naïve SERT+/- animals and was normalized to the level of naïve SERT+/+ animals. At the molecular level, we observed that TS per se affected Bdnf, the glucocorticoid-responsive genes Nr4a1, Gadd45ß, the co-chaperone Fkbp5 as well as glutamatergic and GABAergic gene expression markers including the enzyme Gad67, the vesicular GABA transporter, and the vesicular glutamate transporter genes. Our results suggest that exposure of SERT+/- rats to neonatal TS can normalize their phenotype in adulthood and that TS per se alters the expression of plasticity and stress-related genes in the basolateral amygdala. These findings demonstrate the potential effect of a supportive stimulus in SERT rodents, which are more susceptible to develop psychiatric disorders.

10.
Exp Gerontol ; 138: 111016, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32628974

RESUMO

Aging accelerates neurodegeneration, while natural and safe neuroprotective agents, such as Uncaria tomentosa, may help to overcome this problem. This study assessed the effects of U. tomentosa extract treatment on the aging process in the brain of Wistar rats. The spatial memory and learning, acetylcholinesterase (AChE) activity, and DNA damage were assessed. Animals of 14 months were tested with different doses of U. tomentosa (5 mg/kg, 15 mg/kg, and 30 mg/kg) and with different durations of treatment (one month and one year). In the Morris Water Maze (MWM), the escape latency was significantly (p < 0.0001) shorter in rats that received 5 mg/kg, 15 mg/kg, and 30 mg/kg of U. tomentosa for both one month and one year of treatment. There was a significant difference in time spent at the platform zone (p < 0.05) of the middle-aged rats treated with U. tomentosa extract for one year when compared to the control rats. The cortex and hippocampus of rats treated with U. tomentosa for one year showed significant (p > 0.05) reduction in AChE activity. DNA damage index on cortex was significantly lower (p < 0.05) in animals treated with 30 mg/kg of U. tomentosa for one month while all the tested doses demonstrated significant (p < 0.001) reductions in DNA damage index in animals treated for one year. In conclusion, U. tomentosa may represent a source of phytochemicals that could enhance memory activity, repair DNA damage, and alter AChE activity, thereby providing neuroprotection during the aging process.


Assuntos
Unha-de-Gato , Animais , Antioxidantes , Cognição , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
11.
Pharmacol Biochem Behav ; 92(2): 231-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19109989

RESUMO

Regular physical activity exerts beneficial effects for mental and physical health, but an intense exercise can cause oxidative stress (OS) in dopaminergic regions and intensify the harmful effects of reserpine. Reserpine-induced neurotoxicity can be accessed by behavioral and biochemical evaluations. The objective of this study was to examine the effect of a gradual intensifying exercise program on an animal model of oxidative stress. Male rats were submitted to swimming sessions (1 h/day, for eleven weeks), and they were loaded gradually during the adaptation period (two weeks) with a weight corresponding to 1-7% of their body weight tied to their back. After the last training, the animals were treated with two doses of vehicle or reserpine (1 mg/kg-sc), an agent that induces orofacial dyskinesia. After behavioral evaluations, the striatum was dissected for enzymatic and biochemical assays. Development of cardiac hypertrophy demonstrated the effectiveness of the physical training. The gradual intense exercise and reserpine increased lipid peroxidation and striatal catalase activity. The results confirm the importance of catalase activity in orofacial dyskinesia which can be related to lipid peroxidation in striatal dopaminergic brain tissue. These results indicate that intense exercise can have some deleterious effect on striatal dopaminergic system.


Assuntos
Corpo Estriado/efeitos dos fármacos , Estresse Oxidativo , Condicionamento Físico Animal , Reserpina/farmacologia , Animais , Catalase/metabolismo , Corpo Estriado/enzimologia , Masculino , Ratos , Ratos Wistar
12.
Toxicol Lett ; 308: 7-16, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30898663

RESUMO

Opioids are addictive drugs, whose misuse evoke withdrawal and relapse. Mediterranean-based diet (MBD) is rich in n-3 polyunsaturated fatty acids (PUFA), while Western based diets (WBDs) contain saturated fatty acids including interesterified fat (IF) and palm oil (PO), influencing neural functions. We compared MBD and WBDs on morphine-induced addiction parameters. Rats fed with MBD (chow plus 20% soybean- and fish-oil- n-6/n-3 PUFA 1:1) or WBD (WBD- PO or WBD-IF: chow plus 20% of palm oil or interesterified fat, respectively; high n-6/n-3 PUFA ratio) were exposed to morphine in conditioned place preference (CPP) paradigm. Anxiety-like behavior, locomotion and thermal sensitivity were evaluated during withdrawal. After morphine-CPP extinction, animals were challenged to morphine-reinstatement to induce relapse. All groups showed morphine-CPP, WBDs favored anxiety-like behaviors per se, locomotor sensitization and thermal hipersensitivity during withdrawal, resulting in increased morphine-reinstatement in comparison to MBD, which did not show relapse. WBDs increased glucocorticoid receptor immunoreactivity in the pre-frontal cortex, increasing corticosterone (CORT) and adrenocorticotrophic hormone (ACTH) per se and after morphine-reinstatement. In the nucleus accumbens, WBDs increased dopamine transporter (DAT) and dopamine receptor-2 (D2R) immunoreactivity and decreased dopamine receptor-1 (D1R). These findings indicate that WBDs facilitate morphine-reinstatement, unlike MBD, preserving the DA system mesolimbic neuroplasticity.


Assuntos
Dieta Mediterrânea , Dieta Ocidental/efeitos adversos , Dependência de Morfina/dietoterapia , Síndrome de Abstinência a Substâncias/prevenção & controle , Animais , Ansiedade/prevenção & controle , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Dieta Mediterrânea/psicologia , Dieta Ocidental/psicologia , Modelos Animais de Doenças , Hipersensibilidade/prevenção & controle , Hipersensibilidade/psicologia , Masculino , Morfina/administração & dosagem , Dependência de Morfina/psicologia , Atividade Motora/efeitos dos fármacos , Ratos Wistar , Recidiva
13.
Neurosci Lett ; 690: 138-144, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30296508

RESUMO

INTRODUCTION: amphetamine (AMPH) is related to development of addiction, anxiety-like behaviors and impairments of memory after chronic use. In the current experiment, an ultra-high dilution (10-24mg/mL) of AMPH was used, consisting of the AMPH isotherapic (AMPH-ISO), which can be used as a replacement therapy to treat AMPH addiction. AIM: To verify the influence of AMPH-ISO on toxicological aspects of AMPH addiction. METHODS: Rats received d,l-AMPH (4.0 mg/kg, i.p.) in the conditioned place preference (CPP) paradigm (8 days). Then, half of each experimental group (AMPH or saline) received AMPH-ISO/vehicle (0.2 mL per rat, once a day), for fourteen days. On the fifteenth day, animals were re-assessed in the CPP paradigm (to verify relapse behaviors) after a single dose of AMPH (2.0 mg/kg). Subsequently, anxiety-like behaviors were quantified, followed by ex vivo assays in the pre-frontal cortex. RESULTS: AMPH-ISO prevented relapse-like behavior of AMPH and reduced anxiety-like behavior per se in animals co-treated with AMPH. Molecular analysis evidenced that AMPH-ISO modulated dopaminergic targets (dopamine transporter, tyrosine hydroxylase and D1-R), whose immunoreactivity was increased by AMPH. Also, AMPH-ISO increased catalase activity and NPSH levels and reduced lipid peroxidation and protein carbonyl levels in the prefrontal cortex. CONCLUSION: This study shows that an ultra-high dilution of AMPH may be a useful alternative which can contribute with AMPH addiction treatment.


Assuntos
Anfetamina/farmacologia , Comportamento Aditivo/prevenção & controle , Condicionamento Clássico/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Animais , Comportamento Aditivo/tratamento farmacológico , Catalase/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Ratos , Receptores de Dopamina D1/metabolismo , Compostos de Sulfidrila/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Mol Neurobiol ; 56(9): 6239-6250, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30741369

RESUMO

Depression is a common psychiatric disease which pharmacological treatment relieves symptoms, but still far from ideal. Tactile stimulation (TS) has shown beneficial influences in neuropsychiatric disorders, but the mechanism of action is not clear. Here, we evaluated the TS influence when applied on adult female rats previously exposed to a reserpine-induced depression-like animal model. Immediately after reserpine model (1 mg/kg/mL, 1×/day, for 3 days), female Wistar rats were submitted to TS (15 min, 3×/day, for 8 days) or not (unhandled). Imipramine (10 mg/kg/mL) was used as positive control. After behavioral assessments, animals were euthanized to collect plasma and prefrontal cortex (PFC). Behavioral observations in the forced swimming test, splash test, and sucrose preference confirmed the reserpine-induced depression-like behavior, which was reversed by TS. Our findings showed that reserpine increased plasma levels of adrenocorticotropic hormone and corticosterone, decreased brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B, and increased proBDNF immunoreactivity in the PFC, which were also reversed by TS. Moreover, TS reestablished glial fibrillary acidic protein and glucocorticoid receptor levels, decreased by reserpine in PFC, while glial cell line-derived neurotrophic factor was increased by TS per se. Our outcomes are showing that TS applied in adulthood exerts a beneficial influence in depression-like behaviors, modulating the HPA axis and regulating neurotrophic factors more effectively than imipramine. Based on this, our proposal is that TS, in the long term, could be considered a new therapeutic strategy for neuropsychiatric disorders improvement in adult life, which may represent an interesting contribution to conventional pharmacological treatment.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal , Depressão/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Fatores de Crescimento Neural/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Transdução de Sinais , Tato , Hormônio Adrenocorticotrópico/sangue , Animais , Peso Corporal/efeitos dos fármacos , Corticosterona/sangue , Depressão/sangue , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos Wistar , Reserpina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sacarose , Natação
15.
Behav Brain Res ; 374: 112119, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31374223

RESUMO

Haloperidol (Hal) is an antipsychotic related to movement disorders. Magnesium (Mg) showed benefits on orofacial dyskinesia (OD), suggesting its involvement with N-methyl-D-aspartate receptors (NMDAR) since it acts blocking calcium channels. Comparisons between nifedipine (NIF; a calcium channel blocker) and Mg were performed to establish the Mg mechanism. Male rats concomitantly received Hal and Mg or NIF for 28 days, and OD behaviors were weekly assessed. Both Mg and NIF decreased Hal-induced OD. Hal increased Ca2+-ATPase activity in the striatum, and Mg reversed it. In the cortex, both Mg and NIF decreased such activity. Dopaminergic and glutamatergic immunoreactivity were modified by Hal and treatments: i) in the cortex: Hal reduced D1R and D2R, increasing NMDAR immunoreactivity. Mg and NIF reversed this Hal influence on D1R and NMDAR, while only Mg reversed Hal effects on D2R levels; ii) in the striatum: Hal decreased D2R and increased NMDAR while Mg and NIF decreased D1R and reversed the Hal-induced decreasing D2R levels. Only Mg reversed the Hal-induced increasing NMDAR levels; iii) in the substantia nigra (SN): while Hal increased D1R, D2R, and NMDAR, both Mg and NIF reversed this influence on D2R, but only Mg reversed the Hal-influence on D1R levels. Only NIF reversed the Hal effects on NMDAR immunoreactivity. These findings allow us to propose that Mg may be useful to minimize Hal-induced movement disturbances. Mg molecular mechanism seems to be involved with a calcium channel blocker because the NIF group showed less expressive effects than the Mg group.


Assuntos
Discinesias/tratamento farmacológico , Haloperidol/farmacologia , Magnésio/farmacologia , Animais , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Corpo Estriado/metabolismo , Haloperidol/efeitos adversos , Magnésio/metabolismo , Masculino , Movimento/efeitos dos fármacos , Transtornos dos Movimentos/tratamento farmacológico , Neostriado/metabolismo , Nifedipino/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Substância Negra/metabolismo
16.
Pharmacol Biochem Behav ; 88(4): 465-72, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18001823

RESUMO

Several neurological diseases are related to oxidative stress (OS) and neurotoxicity. Considering that physical exercise may exert beneficial effects on antioxidant defenses, our objective was to evaluate the influence of a swimming exercise on an OS animal model (reserpine-induced orofacial dyskinesia). In this model, the increased dopamine metabolism can generate OS and neuronal degeneration, causing involuntary movements. The increase in vacuous chewing movements and facial twitching caused by reserpine (1 mg/kg s.c.) was partially prevented by exercise. An increase in catalase activity and a decrease in GSH levels were observed in the striatum. Physical training did not change the effects of reserpine on catalase, however it partially recovered GSH. Exercise per se caused a significant GSH decrease. There was a positive correlation between catalase and OD (r=0.41; r=0.47, P<0.05) and a negative correlation between GSH and OD (r=0.61; r=0.71, P<0.05). These results reveal the benefit of exercise in attenuating the motor disorder related to OS.


Assuntos
Antioxidantes/metabolismo , Antipsicóticos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Reserpina/farmacologia , Animais , Antipsicóticos/toxicidade , Química Encefálica/efeitos dos fármacos , Catalase/sangue , Discinesia Induzida por Medicamentos/psicologia , Glutationa/sangue , Masculino , Ratos , Ratos Wistar , Análise de Regressão , Reserpina/toxicidade
17.
Prog Neuropsychopharmacol Biol Psychiatry ; 31(7): 1478-86, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17669571

RESUMO

Chronic treatment with classical neuroleptics in humans can produce a serious side effect, known as tardive dyskinesia (TD). Here, we examined the effects of V. officinalis, a medicinal herb widely used as calming and sleep-promoting, in an animal model of orofacial dyskinesia (OD) induced by long-term treatment with haloperidol. Adult male rats were treated during 12 weeks with haloperidol decanoate (38 mg/kg, i.m., each 28 days) and with V. officinalis (in the drinking water). Vacuous chewing movements (VCMs), locomotor activity and plus maze performance were evaluated. Haloperidol treatment produced VCM in 40% of the treated rats and the concomitant treatment with V. officinalis did not alter either prevalence or intensity of VCMs. The treatment with V. officinalis increased the percentage of the time spent on open arm and the number of entries into open arm in the plus maze test. Furthermore, the treatment with haloperidol and/or V. officinalis decreased the locomotor activity in the open field test. We did not find any difference among the groups when oxidative stress parameters were evaluated. Haloperidol treatment significantly decreased [(3)H]-dopamine uptake in striatal slices and V. officinalis was not able to prevent this effect. Taken together, our data suggest a mechanism involving the reduction of dopamine transport in the maintenance of chronic VCMs in rats. Furthermore, chronic treatment with V. officinalis seems not produce any oxidative damage to central nervous system (CNS), but it also seems to be devoid of action to prevent VCM, at least in the dose used in this study.


Assuntos
Antipsicóticos/toxicidade , Antagonistas de Dopamina/toxicidade , Proteínas da Membrana Plasmática de Transporte de Dopamina/fisiologia , Haloperidol/toxicidade , Transtornos dos Movimentos/tratamento farmacológico , Valeriana/química , Animais , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Dopamina/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar
18.
Behav Brain Res ; 320: 400-411, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816557

RESUMO

Chronic use of typical antipsychotic haloperidolis related to movement disturbances such as parkinsonism, akathisia and tardive dyskinesia which have been related to excitotoxicity in extrapyramidal brain areas, requiring their prevention and treatment. In the current study we evaluated the influence of the magnesium on prevention (for 28days before-), reversion (for 12days after-) and concomitant supplementation on haloperidol-induced movement disorders in rats. Sub-chronic haloperidol was related to orofacial dyskinesia (OD) and catalepsy development, increased generation of reactive species (RS) and levels of protein carbonyl (PC) in cortex, striatum and substantia nigra (SN) in all experimental protocols. When provided preventatively, Mg reduced the increase of OD and catalepsy time 14 and 7days after haloperidol administration, respectively. When supplemented after haloperidol-induced OD establishment, Mg reversed this behavior after 12days, while catalepsy was reversed after 6days of Mg supplementation.When Mg was concomitantly supplemented with haloperidol administration, OD and catalepsy were prevented. Moreover, Mg supplementation was able to prevent the RS generation in both cortex and SN, reducing PC levels in all brain areas evaluated. When supplemented after haloperidol, Mg reversed RS generation in cortex and striatum, decreasing PC levels in SN and striatum.The co-administration of haloperidol and Mg supplementation prevented RS generation in cortex, striatum and SN, and PC levels in the SN.These outcomes indicate that Mg supplementation may be a useful alternative to prevent movement disturbances resulting of classic antipsychotic pharmacotherapy as haloperidol.


Assuntos
Antipsicóticos/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Discinesias/tratamento farmacológico , Haloperidol/farmacologia , Magnésio/farmacologia , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Embrião de Galinha , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesias/etiologia , Haloperidol/administração & dosagem , Masculino , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo
19.
Food Chem Toxicol ; 110: 25-32, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28974443

RESUMO

Considering the high consumption of processed foods, interesterified fat (IF) has been used to replace trans fat, since it may harm nervous system functions. Opioids are intensely used to alleviate pain, and have a highly addictive potential. Therefore, their improper use is related to addiction, tolerance, and withdrawal syndrome. Wistar rats received soybean oil (SO) or IF during gestation, lactation and post-weaning until pups' adolescence. On post-natal day 39, animals received morphine (4 mg/kg i.p.) in the conditioned place preference (CPP) paradigm. SO group showed morphine preference during drug withdrawal, while IF group showed no preference or withdrawal symptoms, but higher sensitivity to thermal stimuli than SO group. Morphine contidioning increased dopamine 1 receptor (D1R) and NMDAR: N-methyl-d-aspartate receptor (NMDAR) immunoreactivity in the hippocampus of SO, whereas these molecular changes were not observed in IF group. Regardless of morphine conditioning, IF group showed increased Kappa opioid receptor (KOR) immunoreactivity in the spinal cord, evidencing a negative correlation with thermal sensitivity. The chronic consumption of IF-rich foods during earlier periods of life may affect opioid neurotransmission, resulting in loss of rewarding effects related to this system.


Assuntos
Fast Foods/análise , Gorduras/toxicidade , Morfina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/etiologia , Animais , Comportamento Animal , Esterificação , Fast Foods/efeitos adversos , Gorduras/química , Gorduras/metabolismo , Feminino , Manipulação de Alimentos , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Wistar , Recompensa
20.
Brain Res Bull ; 70(2): 165-70, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16782505

RESUMO

Recently, we have described the beneficial effects of Diphenyl diselenide, an organochalcogen with glutathione peroxidase-like activity, on reserpine-induced orofacial dyskinesia in old rats. In this study, our aim was to examine the effects of diselenide on haloperidol-induced orofacial dyskinesia in rats. Male wistar rats received one single dose of Haloperidol decanoate (57 mg/kg/im) or control. After this dose, the animals received daily administration of diphenyl diselenide (1, 5 or 10 mg/kg/sc) or control, during 28 days. Twenty-four hours after the last diselenide or control solution injection, all the rats were observed for quantification of oral dyskinesia through the frequency of vacuous chewing movements (VCM) and tongue protrusion (TP) and the duration of facial twitching (FT). Haloperidol caused a significant increase in VCM, TP and FT observed in the 4 weekly evaluations (p<0.05). The co-administration of diselenide (5 mg/kg) reversed this effect for all the parameters in four behavioral sessions. The results of the present study demonstrate the possible protective activity of diphenyl diselenide on haloperidol-induced orofacial diskinesia. This effect is in accordance to the involvement of neurotoxicity in orofacial dyskinesia and suggest that studies be continued with new antioxidant compounds.


Assuntos
Derivados de Benzeno/uso terapêutico , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/prevenção & controle , Compostos Organosselênicos/uso terapêutico , Animais , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/fisiopatologia , Haloperidol/toxicidade , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa