Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mar Drugs ; 21(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36662221

RESUMO

Microwave-assisted extraction (MAE) is recognized as a green method for extraction of natural products. The current research aimed to explore the MAE for fucoidans extraction from different brown seaweeds, including Fucus vesiculosus, F. spiralis, and Laminaria saccharina. Following several solvent-extraction pre-treatment steps and MAE optimization, the algal biomasses were extracted in a ratio of 1:25 in 0.1 M HCl containing 2 M CaCl2 for 1.0 min. The results showed that L. saccharina's extract was different from the others, regarding the highest sugar content reached 0.47 mg glucose equivalent/mg extract being confirmed by monosaccharide composition analysis and the lowest fucoidan content and sulfation degree at 0.09 mg/mg extract and 0.13, respectively. Moreover, these findings were confirmed by tentative structural elucidation based on Fourier-transform infrared spectrometry which also showed a different spectrum. However, the MAE enhanced melanoidins formation in products, which was confirmed by the intense band at 1420 cm-1. Interestingly, the results of monomeric composition showed that fucoidan extract by MAE from F. vesiculosus belonged to sulfated galactofucans which are known for their potential bioactivities. Furthermore, the cytotoxic activity of the four fucoidans in concentrations ranging from 4.9 µg/mL to 2500 µg/mL was investigated and correlated with the chemical characterization showing that F. vesiculosus_MAE fucoidan was the most potent and safest. The current research revealed the chemical heterogeneity of fucoidans regarding taxonomical class and used greener extraction method of fucoidans toward the achievement of the UN sustainability goals.


Assuntos
Antineoplásicos , Fucus , Phaeophyceae , Alga Marinha , Micro-Ondas , Polissacarídeos/farmacologia , Polissacarídeos/química , Alga Marinha/química , Phaeophyceae/química , Fucus/química
2.
J Immunol ; 201(11): 3383-3391, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30348734

RESUMO

Toll-like receptor 4 plays an important role in the regulation of the innate and adaptive immune response. The majority of TLR4 activators currently in clinical use are derivatives of its prototypic ligand LPS. The discovery of innovative TLR4 activators has the potential of providing new therapeutic immunomodulators and adjuvants. We used computational design methods to predict and optimize a total of 53 cyclic and linear peptides targeting myeloid differentiation 2 (MD2) and cluster of differentiation 14 (CD14), both coreceptors of human TLR4. Activity of the designed peptides was first assessed using NF-κB reporter cell lines expressing either TLR4/MD2 or TLR4/CD14 receptors, then binding to CD14 and MD2 confirmed and quantified using MicroScale Thermophoresis. Finally, we incubated select peptides in human whole blood and observed their ability to induce cytokine production, either alone or in synergy with LPS. Our data demonstrate the advantage of computational design for the discovery of new TLR4 peptide activators with little structural resemblance to known ligands and indicate an efficient strategy with which to identify TLR4 targeting peptides that could be used as easy-to-produce alternatives to LPS-derived molecules in a variety of settings.


Assuntos
Anticorpos Biespecíficos/genética , Sítios de Ligação de Anticorpos/genética , Receptores de Lipopolissacarídeos/imunologia , Antígeno 96 de Linfócito/imunologia , Receptor 4 Toll-Like/agonistas , Anticorpos Biespecíficos/metabolismo , Células Cultivadas , Biologia Computacional , Humanos , Ligantes , Estrutura Molecular , NF-kappa B/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Transdução de Sinais
3.
J Infect Dis ; 215(11): 1742-1752, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368492

RESUMO

The fungal pathogen Candida albicans colonizes basically all human epithelial surfaces, including the skin. Under certain conditions, such as immunosuppression, invasion of the epithelia occurs. Not much is known about defense mechanisms against C. albicans in subepithelial layers such as the dermis. Using immune cell-supplemented 3D skin models we defined a new role for fibroblasts in the dermis and identified a minimal set of cell types for skin protection against C. albicans invasion. Dual RNA sequencing of individual host cell populations and C. albicans revealed that dermal invasion is directly impeded by dermal fibroblasts. They are able to integrate signals from the pathogen and CD4+ T cells and shift toward an antimicrobial phenotype with broad specificity that is dependent on Toll-like receptor 2 and interleukin 1ß. These results highlight a central function of dermal fibroblasts for skin protection, opening new possibilities for treatment of infectious diseases.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Derme , Fibroblastos , Modelos Biológicos , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Derme/citologia , Derme/imunologia , Derme/microbiologia , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/microbiologia , Humanos , Interleucina-1beta , Queratinócitos/citologia , Queratinócitos/imunologia , Queratinócitos/microbiologia , Masculino , Transdução de Sinais/imunologia , Receptor 2 Toll-Like
4.
J Chem Inf Model ; 56(9): 1835-46, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27537371

RESUMO

Toll-like receptors (TLR) are receptors of innate immunity that recognize pathogen associated molecular patterns. They play a critical role in many pathological states, in acute and chronic inflammatory processes. TLR9 is a promising target for drug discovery, since it has been implicated in several pathologies, including defense against viral infections and psoriasis. Immune-modulators are promising molecules for therapeutic intervention in these indications. TLR9 is located in the endosome and activated by dsDNA with CpG motives encountered in microbial DNA. Here we report on a combined approach to discover new TLR9 antagonists by computational chemistry and cell based assays. We used our in-house iterative stochastic elimination (ISE) algorithm to create models that distinguish between TLR9 antagonists ("actives") and other molecules ("inactives"), based on molecular physicochemical properties. Subsequent screening and scoring of a data set of 1.8 million commercially available molecules led to the purchasing of top scored molecules, which were tested in a new cell based system based on human pattern recognition receptors (PRRs) stably expressed in NIH3T3 fibroblasts. As described previously, this cell line shows a very low endogenous PRR-activity and contains a reporter gene which is selectively activated by the integrated human PRR enabling rapid screening of potential ligands. IC50 values of each of these top scored molecules were determined. Out of 60 molecules tested, 56 showed antagonistic activity. We discovered 21 new highly potential antagonists with IC50 values lower than 10 µM, with 5 of them having IC50 values under 1 µM.


Assuntos
Simulação por Computador , Descoberta de Drogas/métodos , Receptor Toll-Like 9/antagonistas & inibidores , Algoritmos , Animais , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Teste de Materiais , Camundongos , Células NIH 3T3 , Processos Estocásticos
5.
Mar Drugs ; 14(4)2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27092514

RESUMO

A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL(-1), Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL(-1). The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye.


Assuntos
Fucus/genética , Polissacarídeos/química , Polissacarídeos/farmacologia , Anticoagulantes/química , Anticoagulantes/farmacologia , Cromatografia de Afinidade/métodos , Herpesvirus Humano 1/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Peso Molecular , Sulfatos/química
6.
Antimicrob Agents Chemother ; 59(10): 6296-307, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248360

RESUMO

Fungal infections are a leading cause of morbidity and death for hospitalized patients, mainly because they remain difficult to diagnose and to treat. Diseases range from widespread superficial infections such as vulvovaginal infections to life-threatening systemic candidiasis. For systemic mycoses, only a restricted arsenal of antifungal agents is available. Commonly used classes of antifungal compounds include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapies, significant side effects, and high costs for several antifungals, there is a need for new antifungals in the clinic. In order to expand the arsenal of compounds with antifungal activity, we previously screened a compound library using a cell-based screening assay. A set of novel benzimidazole derivatives, including (S)-2-(1-aminoisobutyl)-1-(3-chlorobenzyl)benzimidazole (EMC120B12), showed high antifungal activity against several species of pathogenic yeasts, including Candida glabrata and Candida krusei (species that are highly resistant to antifungals). In this study, comparative analysis of EMC120B12 versus fluconazole and nocodazole, using transcriptional profiling and sterol analysis, strongly suggested that EMC120B12 targets Erg11p in the ergosterol biosynthesis pathway and not microtubules, like other benzimidazoles. In addition to the marker sterol 14-methylergosta-8,24(28)-dien-3ß,6α-diol, indicating Erg11p inhibition, related sterols that were hitherto unknown accumulated in the cells during EMC120B12 treatment. The novel sterols have a 3ß,6α-diol structure. In addition to the identification of novel sterols, this is the first time that a benzimidazole structure has been shown to result in a block of the ergosterol pathway.


Assuntos
Antifúngicos/farmacologia , Benzimidazóis/farmacologia , Ergosterol/antagonistas & inibidores , Fluconazol/farmacologia , Nocodazol/farmacologia , Esterol 14-Desmetilase/metabolismo , Antifúngicos/química , Benzimidazóis/química , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Candida/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida glabrata/efeitos dos fármacos , Candida glabrata/crescimento & desenvolvimento , Candida glabrata/metabolismo , Ergosterol/análogos & derivados , Ergosterol/biossíntese , Ergosterol/isolamento & purificação , Fluconazol/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Ensaios de Triagem em Larga Escala , Nocodazol/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
7.
J Mater Sci Mater Med ; 25(3): 595-606, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24258399

RESUMO

Biomimetic nanocrystalline calcium-deficient apatite compounds are particularly attractive for the setup of bioactive bone-repair scaffolds due to their high similarity to bone mineral in terms of chemical composition, structural and substructural features. As such, along with the increasingly appealing development of moderate temperature engineered routes for sample processing, they have widened the armamentarium of orthopedic and maxillofacial surgeons in the field of bone tissue engineering. This was made possible by exploiting the exceptional surface reactivity of biomimetic apatite nanocrystals, capable of easily exchanging ions or adsorbing (bio)molecules, thus leading to highly-versatile drug delivery systems. In this contribution we focus on the preparation of hybrid materials combining biomimetic nanocrystalline apatites and enzymes (lysozyme and subtilisin). This paper reports physico-chemical data as well as cytotoxicity evaluations towards Cal-72 osteoblast-like cells and finally antimicrobial assessments towards selected strains of interest in bone surgery. Biomimetic apatite/enzyme hybrids could be prepared in varying buffers. They were found to be non-cytotoxic toward osteoblastic cells and the enzymes retained their biological activity (e.g. bond cleavage or antibacterial properties) despite the immobilization and drying processes. Release properties were also examined. Beyond these illustrative examples, the concept of biomimetic apatites functionalized with enzymes is thus shown to be useable in practice, e.g. for antimicrobial purposes, thus widening possible therapeutic perspectives.


Assuntos
Apatitas/química , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Materiais Biomiméticos/síntese química , Fosfatos de Cálcio/química , Muramidase/química , Osteogênese/fisiologia , Subtilisina/química , Substitutos Ósseos/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Estabilidade Enzimática , Humanos , Teste de Materiais , Conformação Molecular , Nanoestruturas , Osteogênese/efeitos dos fármacos , Tamanho da Partícula , Propriedades de Superfície
8.
Bioengineering (Basel) ; 10(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36829714

RESUMO

Biomimetic nanocrystalline apatites analogous to bone mineral can be prepared using soft chemistry. Due to their high similarity to bone apatite, as opposed to stoichiometric hydroxyapatite for example, they now represent an appealing class of compounds to produce bioactive ceramics for which drug delivery and ion exchange abilities have been described extensively. However, immersion in aqueous media of dried non-carbonated biomimetic apatite crystals may generate an acidification event, which is often disregarded and not been clarified to-date. Yet, this acidification process could limit their further development if it is not understood and overcome if necessary. This may, for example, alter biological test outcomes, during their evaluation as bone repair materials, due to potentially deleterious effects of the acidic environment on cells, especially in in vitro static conditions. In this study, we explore the origins of this acidification phenomenon based on complementary experimental data and we point out the central role of the hydrated ionic layer present on apatite nanocrystals. We then propose a practical strategy to circumvent this acidification effect using an adequate post-precipitation equilibration step that was optimized. Using this enutralization protocol, we then showed the possibility of performing (micro)biological assessments on such compounds and provide an illustration with the examples of post-equilibrated Cu2+- and Ag+-doped nanocrystalline apatites. We demonstrate their non-cytotoxicity to osteoblast cells and their antibacterial features as tested versus five major pathogens involved in bone infections, therefore pointing to their relevance in the field of antibacterial bone substitutes. The preliminary in vivo implantation of a relevant sample in a rat's calvarial defect confirmed its biocompatibility and the absence of adverse reaction. Understanding and eliminating this technical barrier should help promoting biomimetic apatites as a genuine new class of biomaterial-producing compounds for bone regeneration applications, e.g., with antibacterial features, far from being solely considered as "laboratory curiosities".

9.
Sci Rep ; 13(1): 10361, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365250

RESUMO

Hydrogels can be equipped with functional groups for specific purposes. Isothiouronium groups can enhance adsorptivity, or allow coupling of other functional groups through mild reactions after transformation to thiol groups. Here we present a method to prepare multifunctional hydrogels by introducing isothiouronium groups into poly(ethylene glycol) diacrylate (PEGDA) hydrogels, and convert them into thiol-functionalized hydrogels by the reduction of the isothiouronium groups. For this purpose, the amphiphilic monomer 2-(11-(acryloyloxy)-undecyl)isothiouronium bromide (AUITB), containing an isothiouronium group, was synthesized and copolymerized with PEGDA. In this convenient way, it was possible to incorporate up to 3 wt% AUITB into the hydrogels without changing their equilibrium swelling degree. The successful functionalization was demonstrated by surface analysis of the hydrogels with water contact angle measurements and increased isoelectric points of the hydrogel surfaces from 4.5 to 9.0 due to the presence of the isothiouronium groups. The hydrogels showed a suitability as an adsorbent, as exemplified by the pronounced adsorption of the anionic drug diclofenac. The potential of the functionalization for (bio)conjugation reactions was demonstrated by the reduction of isothiouronium groups to thiols and subsequent immobilization of the functional enzyme horseradish peroxidase on the hydrogels. The results show that fully accessible isothiouronium groups can be introduced into radically cross-linked hydrogels.

10.
J Control Release ; 364: 654-671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939853

RESUMO

Despite tremendous global efforts since the beginning of the COVID-19 pandemic, still only a limited number of prophylactic and therapeutic options are available. Although vaccination is the most effective measure in preventing morbidity and mortality, there is a need for safe and effective post-infection treatment medication. In this study, we explored a pipeline of 21 potential candidates, examined in the Calu-3 cell line for their antiviral efficacy, for drug repurposing. Ralimetinib and nafamostat, clinically used drugs, have emerged as attractive candidates. Due to the inherent limitations of the selected drugs, we formulated targeted liposomes suitable for both systemic and intranasal administration. Non-targeted and targeted nafamostat liposomes (LipNaf) decorated with an Apolipoprotein B peptide (ApoB-P) as a specific lung-targeting ligand were successfully developed. The developed liposomal formulations of nafamostat were found to possess favorable physicochemical properties including nano size (119-147 nm), long-term stability of the normally rapidly degrading compound in aqueous solution, negligible leakage from the liposomes upon storage, and a neutral surface charge with low polydispersity index (PDI). Both nafamostat and ralimetinib liposomes showed good cellular uptake and lack of cytotoxicity, and non-targeted LipNaf demonstrated enhanced accumulation in the lungs following intranasal (IN) administration in non-infected mice. LipNaf retained its anti-SARS-CoV 2 activity in Calu 3 cells with only a modest decrease, exhibiting complete inhibition at concentrations >100 nM. IN, but not intraperitoneal (IP) treatment with targeted LipNaf resulted in a trend to reduced viral load in the lungs of K18-hACE2 mice compared to targeted empty Lip. Nevertheless, upon removal of outlier data, a statistically significant 1.9-fold reduction in viral load was achieved. This observation further highlights the importance of a targeted delivery into the respiratory tract. In summary, we were able to demonstrate a proof-of-concept of drug repurposing by liposomal formulations with anti-SARS-CoV-2 activity. The biodistribution and bioactivity studies with LipNaf suggest an IN or inhalation route of administration for optimal therapeutic efficacy.


Assuntos
COVID-19 , Humanos , Camundongos , Animais , Lipossomos , Reposicionamento de Medicamentos , Pandemias , Distribuição Tecidual , Pulmão , SARS-CoV-2
11.
Microorganisms ; 10(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35208698

RESUMO

Infectious diseases are still a major problem worldwide. This includes microbial infections, with a constant increase in resistance to the current anti-infectives employed. Toll-like receptors (TLRs) perform a fundamental role in pathogen recognition and activation of the innate immune response. Promising new approaches to combat infections and inflammatory diseases involve modulation of the host immune system via TLR4. TLR4 and its co-receptors MD2 and CD14 are required for immune response to fungal and bacterial infection by recognition of microbial cell wall components, making it a prime target for drug development. To evaluate the efficacy of anti-infective compounds early on, we have developed a series of human-based immune responsive infection models, including immune responsive 3D-skin infection models for modeling fungal infections. By using computational methods: pharmacophore modeling and molecular docking, we identified a set of 46 potential modulators of TLR4, which were screened in several tests systems of increasing complexity, including immune responsive 3D-skin infection models. We could show a strong suppression of cytokine and chemokine response induced by lipopolysacharide (LPS) and Candida albicans for individual compounds. The development of human-based immune responsive assays provides a more accurate and reliable basis for development of new anti-inflammatory or immune-modulating drugs.

12.
Pharmaceutics ; 14(3)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35336008

RESUMO

Herpes simplex virus-1 (HSV-1) is highly contagious, and there is a need for a therapeutic means to eradicate it. We have identified an siRNA (siHSV) that knocks down gene expression of the infected cell protein 0 (ICP0), which is important in the regulation of HSV infection. The selected siHSV was encapsulated in liposomes to overcome its poor stability, increase cell permeability, and prolonging siRNA circulation time. Several siRNAs against ICP0 have been designed and identified. We examined the role of various parameters, including formulation technique, lipids composition, and ratio. An optimal liposomal siHSV formulation (LipDOPE-siHSV) was characterized with desirable physiochemical properties, in terms of nano-size, low polydispersity index (PDI), neutral surface charge, high siHSV loading, spherical shape, high stability in physiologic conditions in vitro, and long-term shelf-life stability (>1 year, 4 °C). The liposomes exhibited profound internalization by human keratinocytes, no cytotoxicity in cell cultures, no detrimental effect on mice liver enzymes, and a gradual endo-lysosomal escape. Mice biodistribution studies in intact mice revealed accumulation, mainly in visceral organs but also in the trigeminal ganglion. The therapeutic potential of siHSV liposomes was demonstrated by significant antiviral activity both in the plaque reduction assay and in the 3D epidermis model, and the mechanism of action was validated by the reduction of ICP0 expression levels.

13.
Antimicrob Agents Chemother ; 55(10): 4789-801, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21746957

RESUMO

Fungal infections are a serious health problem in clinics, especially in the immune-compromised patient. Disease ranges from widespread superficial infections like vulvovaginal infections to life-threatening systemic candidiasis. Especially for systemic mycoses, only a limited arsenal of antifungals is available. The most commonly used classes of antifungal compounds used include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapy, significant side effects, and high costs for several antifungals, there is a medical need for new antifungals in the clinic and general practice. In order to expand the arsenal of compounds with antifungal activities, we screened a compound library including more than 35,000 individual compounds derived from organic synthesis as well as combinatorial compound collections representing mixtures of compounds for antimycotic activity. In total, more than 100,000 compounds were screened using a new type of activity-selectivity assay, analyzing both the antifungal activity and the compatibility with human cells at the same time. One promising hit, an (S)-2-aminoalkyl benzimidazole derivative, was developed among a series of lead compounds showing potent antifungal activity. (S)-2-(1-Aminoisobutyl)-1-(3-chlorobenzyl) benzimidazole showed the highest antifungal activity and the best compatibility with human cells in several cell culture models and against a number of clinical isolates of several species of pathogenic Candida yeasts. Transcriptional profiling indicates that the newly discovered compound is a potential inhibitor of the ergosterol pathway, in contrast to other benzimidazole derivatives, which target microtubules.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Animais , Antifúngicos/química , Antifúngicos/toxicidade , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/toxicidade , Células CHO , Candida/genética , Candida/isolamento & purificação , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Linhagem Celular , Cricetinae , Farmacorresistência Fúngica , Ergosterol/antagonistas & inibidores , Genoma Fúngico , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Análise de Sequência com Séries de Oligonucleotídeos , Relação Estrutura-Atividade , Transcrição Gênica
14.
Int J Med Microbiol ; 301(5): 384-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21571590

RESUMO

Infectious diseases have long been regarded as losing their threat to mankind. However, in the recent decades infectious diseases have been regaining grounds and are back in the focus of research. This is also due to the fact that medical progress has enabled us to treat and cure a much higher fraction of severe diseases or trauma, resulting in a significant proportion of temporarily or constantly immune-suppressed patients. Infectious diseases result from the interplay between pathogenic microorganisms and the hosts they infect, especially their defense systems. Consequently, immune-suppressed patients are at high risk to succumb from opportunistic infections, like Candida infections. To study the balance between host and C. albicans with regard to the establishment of disease or asymptomatic, commensal colonisation, we developed host-pathogen interaction systems to study both the adaptation of C. albicans to different epithelia as well as to investigate the sensors of the innate immune system, the pattern recognition receptors. These host-pathogen interaction systems, as well as some of the results gained are described in this review.


Assuntos
Candida albicans/imunologia , Candida albicans/patogenicidade , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Fatores de Virulência/metabolismo , Adesão Celular , Células Epiteliais/microbiologia , Humanos , Imunidade Inata
15.
Sci Transl Med ; 13(598)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135112

RESUMO

More than 50% of the world population is chronically infected with herpesviruses. Herpes simplex virus (HSV) infections are the cause of herpes labialis (cold sores), genital herpes, and sight-impairing keratitis. Less frequently, life-threatening disseminated disease (encephalitis and generalized viremia) can also occur, mainly in immunocompromised patients and newborns. After primary infection, HSV persists for life in a latent state in trigeminal or sacral ganglia and, triggered by diverse stimuli, disease recurs in more than 30% of patients up to several times a year. Current therapy with nucleoside analogs targeting the viral polymerase is somewhat effective but limited by poor exposure in the nervous system, and latent infections are not affected by therapy. Here, we report on an inhibitor of HSV helicase-primase with potent in vitro anti-herpes activity, a different mechanism of action, a low frequency of HSV resistance, and a favorable pharmacokinetic and safety profile. Improved target tissue exposure results in superior efficacy in preventing and treating HSV infection and disease in animal models as compared to standard of care. Therapy of primary HSV infections with drug candidate IM-250 {(S)-2-(2',5'-difluoro-[1,1'-biphenyl]-4-yl)-N-methyl-N-(4-methyl-5-(S-methylsulfon-imidoyl)thiazol-2-yl)acetamide} not only reduces the duration of disease symptoms or time to healing but also prevents recurrent disease in guinea pigs. Treatment of recurrent infections reduces the frequency of recurrences and viral shedding, and, unlike nucleosidic drugs, IM-250 remains effective for a time after cessation of treatment. Hence, IM-250 has advantages over standard-of-care therapies and represents a promising therapeutic for chronic HSV infection, including nucleoside-resistant HSV.


Assuntos
Antivirais , Herpes Simples , Latência Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Primase , Cobaias , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 2 , Humanos , Sistema Nervoso
16.
J Biotechnol ; 323: 313-321, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32898625

RESUMO

Mammalian cells have become the predominant expression system for the production of biopharmaceuticals due to their capabilities in posttranslational modifications. In recent years, the efficacy of these production processes has increased significantly through technical improvements. However, the state of the art in the development of producer cell lines includes many manual steps and is as such very time and cost consuming. In this study we developed a process combination of Raman micro-spectroscopy, laser-induced forward transfer (LIFT) and surface-enhanced Raman spectroscopy (SERS) as an automated machine system for the identification, separation and characterization of single cell-clones for biopharmaceutical production. Raman spectra showed clear differences between individual antibody-producing and non-producing chinese hamster ovary (CHO) cells after their stable transfection with a plasmid coding for an immunoglobulin G (IgG) antibody. Spectra of producing CHO cells exhibited Raman signals characteristic for human IgG. Individual producing CHO cells were successfully separated and transferred into a multiwell plate via LIFT. Besides, changes in concentration of human IgG in solution were detected via SERS. SERS spectra showed the same peak patterns but differed in their peak intensity. Overall, our results show that identification of individual antibody-producing CHO cells via Raman micro-spectroscopy, cell separation via LIFT and determination of changes in concentrations of overexpressed protein via SERS are suitable and versatile tools for assembling a fully automated system for biopharmaceuticals manufacturing.


Assuntos
Automação/métodos , Produtos Biológicos , Análise Espectral Raman/métodos , Animais , Células CHO , Linhagem Celular , Proliferação de Células , Cricetinae , Cricetulus , Humanos , Imunoglobulina G , Lasers , Receptor 4 Toll-Like , Transfecção
17.
Vaccines (Basel) ; 8(1)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32121656

RESUMO

Bacterial pathogens cause severe infections worldwide in livestock and in humans, and antibiotic resistance further increases the importance of prophylactic vaccines. Inactivated bacterial vaccines (bacterins) are usually produced via incubation of the pathogen with chemicals such as formaldehyde, which is time consuming and may cause loss of immunogenicity due to the modification of structural components. We evaluated low-energy electron irradiation (LEEI) as an alternative method to generate a bacterin. Rodentibacter pneumotropicus, an invasive Gram-negative murine pathogen, was inactivated with LEEI and formaldehyde. LEEI resulted in high antigen conservation, and LPS activity was significantly better maintained when compared with formaldehyde treatment. Immunization of mice with LEEI-inactivated R. pneumotropicus elicited a strong immune response with no detectable bacterial burden upon sublethal challenge. The results of this study suggest the inactivation of bacteria with LEEI as an alternative, fast and efficient method to generate bacterial vaccines with increased efficacy.

18.
N Biotechnol ; 40(Pt B): 245-260, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28943390

RESUMO

Protein production using processed cell lysates is a core technology in synthetic biology and these systems are excellent to produce difficult toxins or membrane proteins. However, the composition of the central lysate of cell-free systems is still a "black box". Escherichia coli lysates are most productive for cell-free expression, yielding several mgs of protein per ml of reaction. Their preparation implies proteome fractionation, resulting in strongly biased and yet unknown lysate compositions. Many metabolic pathways are expected to be truncated or completely removed. The lack of knowledge of basic cell-free lysate proteomes is a major bottleneck for directed lysate engineering approaches as well as for assay design using non-purified reaction mixtures. This study is starting to close this gap by providing a blueprint of the S30 lysate proteome derived from the commonly used E. coli strain A19. S30 lysates are frequently used for cell-free protein production and represent the basis of most commercial E. coli cell-free expression systems. A fraction of 821 proteins was identified as the core proteome in S30 lysates, representing approximately a quarter of the known E. coli proteome. Its classification into functional groups relevant for transcription/translation, folding, stability and metabolic processes will build the framework for tailored cell-free reactions. As an example, we show that SOS response induction during cultivation results in tuned S30 lysate with better folding capacity, and improved solubility and activity of synthesized proteins. The presented data and protocols can serve as a platform for the generation of customized cell-free systems and product analysis.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteoma/química , Proteoma/metabolismo , Cromatografia Líquida , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/química , Espectrometria de Massas , Dobramento de Proteína , Solubilidade , Espectrometria de Fluorescência
19.
Microorganisms ; 5(2)2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28590443

RESUMO

The human skin is commonly colonized by diverse fungal species. Some Candida species, especially C. albicans, do not only reside on the skin surface as commensals, but also cause infections by growing into the colonized tissue. However, defense mechanisms at the skin barrier level are very efficient, involving residential non-immune and immune cells as well as immune cells specifically recruited to the site of infection. Therefore, the skin is an effective barrier against fungal infection. While most studies about commensal and pathogenic interaction of Candida species with host epithelia focus on the interaction with mucosal surfaces such as the vaginal and gastrointestinal epithelia, less is known about the mechanisms underlying Candida interaction with the skin. In this review, we focus on the ecology and molecular pathogenesis of Candida species on the skin and give an overview of defense mechanisms against C. albicans in this context. We also discuss new research avenues in dermal infection, including the involvement of neurons, fibroblasts, and commensal bacteria in both mouse and human model systems.

20.
Methods Mol Biol ; 1508: 439-449, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27837520

RESUMO

Human skin is a niche for various fungal species which either colonize the surface of this tissue as commensals or, primarily under conditions of immunosuppression, invade the skin and cause infection. Here we present a method for generation of a human in vitro skin model supplemented with immune cells of choice. This model represents a complex yet amenable tool to study molecular mechanisms of host-fungi interactions at human skin.


Assuntos
Candidíase/microbiologia , Pele/microbiologia , Animais , Candida albicans/fisiologia , Candidíase/imunologia , Técnicas de Cultura de Células , Interações Hospedeiro-Patógeno , Humanos , Células Jurkat , Modelos Biológicos , Pele/imunologia , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa