Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38806248

RESUMO

Coordinated multijoint limb and digit movements-"manual dexterity"-underlie both specialized skills (e.g., playing the piano) and more mundane tasks (e.g., tying shoelaces). Impairments in dexterous skill cause significant disability, as occurs with motor cortical injury, Parkinson's disease, and a range of other pathologies. Clinical observations, as well as basic investigations, suggest that corticostriatal circuits play a critical role in learning and performing dexterous skills. Furthermore, dopaminergic signaling in these regions is implicated in synaptic plasticity and motor learning. Nonetheless, the role of striatal dopamine signaling in skilled motor learning remains poorly understood. Here, we use fiber photometry paired with a genetically encoded dopamine sensor to investigate striatal dopamine release in both male and female mice as they learn and perform a skilled reaching task. Dopamine rapidly increases during a skilled reach and peaks near pellet consumption. In the dorsolateral striatum, dopamine dynamics are faster than in the dorsomedial and ventral striatum. Across training, as reaching performance improves, dopamine signaling shifts from pellet consumption to cues that predict pellet availability, particularly in medial and ventral areas of the striatum. Furthermore, performance prediction errors are present across the striatum, with reduced dopamine release after an unsuccessful reach. These findings show that dopamine dynamics during skilled motor behaviors change with learning and are differentially regulated across striatal subregions.


Assuntos
Corpo Estriado , Dopamina , Aprendizagem , Destreza Motora , Animais , Dopamina/metabolismo , Masculino , Camundongos , Feminino , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Camundongos Endogâmicos C57BL
2.
J Neurosci ; 43(44): 7376-7392, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709540

RESUMO

The survival of an organism is dependent on its ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the NAc is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase (TH)-Cre Long Evans rats, it was found that, under baseline conditions, ∼84% of TH-Cre rats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCutTM revealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient toward and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues.SIGNIFICANCE STATEMENT Activity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCutTM revealed that cue-directed behaviors do not emerge without dopamine neuron activity in the VTA. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of dopamine neuron activity in the VTA during cue presentation to encode the incentive value of reward cues.


Assuntos
Sinais (Psicologia) , Motivação , Ratos , Masculino , Animais , Neurônios Dopaminérgicos , Ratos Sprague-Dawley , Dopamina , Ratos Long-Evans , Recompensa
3.
Nature ; 546(7660): 611-616, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28614299

RESUMO

Physiological needs bias perception and attention to relevant sensory cues. This process is 'hijacked' by drug addiction, causing cue-induced cravings and relapse. Similarly, its dysregulation contributes to failed diets, obesity, and eating disorders. Neuroimaging studies in humans have implicated insular cortex in these phenomena. However, it remains unclear how 'cognitive' cortical representations of motivationally relevant cues are biased by subcortical circuits that drive specific motivational states. Here we develop a microprism-based cellular imaging approach to monitor visual cue responses in the insular cortex of behaving mice across hunger states. Insular cortex neurons demonstrate food-cue-biased responses that are abolished during satiety. Unexpectedly, while multiple satiety-related visceral signals converge in insular cortex, chemogenetic activation of hypothalamic 'hunger neurons' (expressing agouti-related peptide (AgRP)) bypasses these signals to restore hunger-like response patterns in insular cortex. Circuit mapping and pathway-specific manipulations uncover a pathway from AgRP neurons to insular cortex via the paraventricular thalamus and basolateral amygdala. These results reveal a neural basis for state-specific biased processing of motivationally relevant cues.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Alimentos , Homeostase , Vias Neurais , Estimulação Luminosa , Proteína Relacionada com Agouti/metabolismo , Animais , Sinais (Psicologia) , Fome/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Resposta de Saciedade/fisiologia
4.
N Engl J Med ; 386(20): 1950-1952, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35584160
5.
J Neurosci ; 33(23): 9734-42, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23739970

RESUMO

Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of rapid eye movement sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal gray, lateral pontine tegmentum, locus ceruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knock-out mice, a model of narcolepsy. These lesions did not alter basic sleep-wake behavior but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia.


Assuntos
Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Cataplexia/metabolismo , Cataplexia/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neuropeptídeos/deficiência , Animais , Cataplexia/patologia , Eletroencefalografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orexinas
6.
Proc Natl Acad Sci U S A ; 108(44): 18144-9, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22025725

RESUMO

Bipolar disorder is a debilitating psychopathology with unknown etiology. Accumulating evidence suggests the possible involvement of Na(+),K(+)-ATPase dysfunction in the pathophysiology of bipolar disorder. Here we show that Myshkin mice carrying an inactivating mutation in the neuron-specific Na(+),K(+)-ATPase α3 subunit display a behavioral profile remarkably similar to bipolar patients in the manic state. Myshkin mice show increased Ca(2+) signaling in cultured cortical neurons and phospho-activation of extracellular signal regulated kinase (ERK) and Akt in the hippocampus. The mood-stabilizing drugs lithium and valproic acid, specific ERK inhibitor SL327, rostafuroxin, and transgenic expression of a functional Na(+),K(+)-ATPase α3 protein rescue the mania-like phenotype of Myshkin mice. These findings establish Myshkin mice as a unique model of mania, reveal an important role for Na(+),K(+)-ATPase α3 in the control of mania-like behavior, and identify Na(+),K(+)-ATPase α3, its physiological regulators and downstream signal transduction pathways as putative targets for the design of new antimanic therapies.


Assuntos
Transtorno Bipolar/genética , ATPase Trocadora de Sódio-Potássio/fisiologia , Animais , Transtorno Bipolar/fisiopatologia , Sinalização do Cálcio , Células Cultivadas , Ritmo Circadiano , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Motivação , Recompensa , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , Regulação para Cima
7.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370850

RESUMO

Coordinated multi-joint limb and digit movements - "manual dexterity" - underlie both specialized skills (e.g., playing the piano) and more mundane tasks (e.g., tying shoelaces). Impairments in dexterous skill cause significant disability, as occurs with motor cortical injury, Parkinson's Disease, and a range of other pathologies. Clinical observations, as well as basic investigations, suggest that cortico-striatal circuits play a critical role in learning and performing dexterous skills. Furthermore, dopaminergic signaling in these regions is implicated in synaptic plasticity and motor learning. Nonetheless, the role of striatal dopamine signaling in skilled motor learning remains poorly understood. Here, we use fiber photometry paired with a genetically encoded dopamine sensor to investigate striatal dopamine release as mice learn and perform a skilled reaching task. Dopamine rapidly increases during a skilled reach and peaks near pellet consumption. In dorsolateral striatum, dopamine dynamics are faster than in dorsomedial and ventral striatum. Across training, as reaching performance improves, dopamine signaling shifts from pellet consumption to cues that predict pellet availability, particularly in medial and ventral areas of striatum. Furthermore, performance prediction errors are present across the striatum, with reduced dopamine release after an unsuccessful reach. These findings show that dopamine dynamics during skilled motor behaviors change with learning and are differentially regulated across striatal subregions.

8.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397994

RESUMO

Disruptions to sleep can be debilitating and have a severe effect on daily life. Patients with the sleep disorder narcolepsy suffer from excessive daytime sleepiness, disrupted nighttime sleep, and cataplexy - the abrupt loss of postural muscle tone (atonia) during wakefulness, often triggered by strong emotion. The dopamine (DA) system is implicated in both sleep-wake states and cataplexy, but little is known about the function of DA release in the striatum - a major output region of midbrain DA neurons - and sleep disorders. To better characterize the function and pattern of DA release in sleepiness and cataplexy, we combined optogenetics, fiber photometry, and sleep recordings in a murine model of narcolepsy (orexin-/-; OX KO) and in wildtype mice. Recording DA release in the ventral striatum revealed OX-independent changes across sleep-wake states as well as striking increases in DA release in the ventral, but not dorsal, striatum prior to cataplexy onset. Tonic low frequency stimulation of ventral tegmental efferents in the ventral striatum suppressed both cataplexy and REM sleep, while phasic high frequency stimulation increased cataplexy propensity and decreased the latency to rapid eye movement (REM) sleep. Together, our findings demonstrate a functional role of DA release in the striatum in regulating cataplexy and REM sleep.

9.
iScience ; 26(9): 107613, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664637

RESUMO

Patients with the sleep disorder narcolepsy suffer from excessive daytime sleepiness, disrupted nighttime sleep, and cataplexy-the abrupt loss of postural muscle tone during wakefulness, often triggered by strong emotion. The dopamine (DA) system is implicated in both sleep-wake states and cataplexy, but little is known about the function of DA release in the striatum and sleep disorders. Recording DA release in the ventral striatum revealed orexin-independent changes across sleep-wake states as well as striking increases in DA release in the ventral, but not dorsal, striatum prior to cataplexy onset. Tonic low-frequency stimulation of ventral tegmental efferents in the ventral striatum suppressed both cataplexy and rapid eye movement (REM) sleep, while phasic high-frequency stimulation increased cataplexy propensity and decreased the latency to REM sleep. Together, our findings demonstrate a functional role of DA release in the striatum in regulating cataplexy and REM sleep.

10.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205506

RESUMO

The survival of an organism is dependent on their ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the nucleus accumbens is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase (TH)-Cre Long Evans rats it was found that, under baseline conditions, ∼84% of TH-Cre rats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCut revealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient towards and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues. Significance Statement: Activity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCut revealed that cue-directed behaviors do not emerge without VTA dopamine. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of VTA dopamine during cue presentation to encode the incentive value of reward cues.

11.
Front Neurosci ; 16: 952275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177357

RESUMO

Given the widespread prevalence of sleep disorders and their impacts on health, it is critical that researchers continue to identify and evaluate novel avenues of treatment. Recently the melanin-concentrating hormone (MCH) system has attracted commercial and scientific interest as a potential target of pharmacotherapy for sleep disorders. This interest emerges from basic scientific research demonstrating a role for MCH in regulating sleep, and particularly REM sleep. In addition to this role in sleep regulation, the MCH system and the MCH receptor 1 (MCHR1) have been implicated in a wide variety of other physiological functions and behaviors, including feeding/metabolism, reward, anxiety, depression, and learning. The basic research literature on sleep and the MCH system, and the history of MCH drug development, provide cause for both skepticism and cautious optimism about the prospects of MCH-targeting drugs in sleep disorders. Extensive efforts have focused on developing MCHR1 antagonists for use in obesity, however, few of these drugs have advanced to clinical trials, and none have gained regulatory approval. Additional basic research will be needed to fully characterize the MCH system's role in sleep regulation, for example, to fully differentiate between MCH-neuron and peptide/receptor-mediated functions. Additionally, a number of issues relating to drug design will continue to pose a practical challenge for novel pharmacotherapies targeting the MCH system.

12.
Neuron ; 110(2): 183-184, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35051362

RESUMO

The brain requires a lot of energy to carry out its functions at peak performance. In times of energy deficit, something has to give. In this issue of Neuron, Padamsey et al. (2021) explore how metabolic demands impact cortical coding by demonstrating the effects of food restriction on visual processing.


Assuntos
Neurônios , Percepção Visual , Encéfalo , Cognição/fisiologia , Percepção Visual/fisiologia
13.
Curr Biol ; 32(7): 1563-1576.e8, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35245458

RESUMO

Postrhinal cortex (POR) and neighboring lateral visual association areas are necessary for identifying objects and interpreting them in specific contexts, but how POR neurons encode the same object across contexts remains unclear. Here, we imaged excitatory neurons in mouse POR across tens of days prior to and throughout initial cue-reward learning and reversal learning. We assessed responses to the same cue when it was rewarded or unrewarded, during both locomotor and stationary contexts. Surprisingly, a large class of POR neurons were minimally cue-driven prior to learning. After learning, distinct clusters within this class responded selectively to a given cue when presented in a specific conjunction of reward and locomotion contexts. In addition, another class contained clusters of neurons whose cue responses were more transient, insensitive to reward learning, and adapted over thousands of presentations. These two classes of POR neurons may support context-dependent interpretation and context-independent identification of sensory cues.


Assuntos
Sinais (Psicologia) , Córtex Visual , Animais , Córtex Cerebral/fisiologia , Camundongos , Neurônios/fisiologia , Recompensa , Córtex Visual/fisiologia
14.
Sleep ; 33(10): 1295-304, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21061851

RESUMO

STUDY OBJECTIVES: To determine if the dopaminergic system modulates cataplexy, sleep attacks and sleep-wake behavior in narcoleptic mice. DESIGN: Hypocretin/orexin knockout (i.e., narcoleptic) and wild-type mice were administered amphetamine and specific dopamine receptor modulators to determine their effects on sleep, cataplexy and sleep attacks. PATIENTS OR PARTICIPANTS: Hypocretin knockout (n = 17) and wild-type mice (n = 21). INTERVENTIONS: Cataplexy, sleep attacks and sleep-wake behavior were identified using electroencephalogram, electromyogram and videography. These behaviors were monitored for 4 hours after an i.p. injection of saline, amphetamine and specific dopamine receptor modulators (D1- and D2-like receptor modulators). MEASUREMENTS AND RESULTS: Amphetamine (2 mg/kg), which increases brain dopamine levels, decreased sleep attacks and cataplexy by 61% and 67%, suggesting that dopamine transmission modulates such behaviors. Dopamine receptor modulation also had powerful effects on sleep attacks and cataplexy. Activation (SKF 38393; 20 mg/kg) and blockade (SCH 23390; 1 mg/kg) of D1-like receptors decreased and increased sleep attacks by 77% and 88%, without affecting cataplexy. Pharmacological activation of D2-like receptors (quinpirole; 0.5 mg/kg) increased cataplectic attacks by 172% and blockade of these receptors (eticlopride; 1 mg/kg) potently suppressed them by 97%. Manipulation of D2-like receptors did not affect sleep attacks. CONCLUSIONS: We show that the dopaminergic system plays a role in regulating both cataplexy and sleep attacks in narcoleptic mice. We found that cataplexy is modulated by a D2-like receptor mechanism, whereas dopamine modulates sleep attacks by a D1-like receptor mechanism. These results support a role for the dopamine system in regulating sleep attacks and cataplexy in a murine model of narcolepsy.


Assuntos
Cataplexia/fisiopatologia , Dopaminérgicos/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Sono/efeitos dos fármacos , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Anfetamina/farmacologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Benzazepinas/farmacologia , Modelos Animais de Doenças , Eletroencefalografia/efeitos dos fármacos , Eletromiografia/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Narcolepsia/fisiopatologia , Quimpirol/farmacologia , Receptores Dopaminérgicos/efeitos dos fármacos , Salicilamidas/farmacologia , Gravação de Videoteipe
15.
Nat Neurosci ; 23(8): 981-991, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514136

RESUMO

Salient experiences are often relived in the mind. Human neuroimaging studies suggest that such experiences drive activity patterns in visual association cortex that are subsequently reactivated during quiet waking. Nevertheless, the circuit-level consequences of such reactivations remain unclear. Here, we imaged hundreds of neurons in visual association cortex across days as mice learned a visual discrimination task. Distinct patterns of neurons were activated by different visual cues. These same patterns were subsequently reactivated during quiet waking in darkness, with higher reactivation rates during early learning and for food-predicting versus neutral cues. Reactivations involving ensembles of neurons encoding both the food cue and the reward predicted strengthening of next-day functional connectivity of participating neurons, while the converse was observed for reactivations involving ensembles encoding only the food cue. We propose that task-relevant neurons strengthen while task-irrelevant neurons weaken their dialog with the network via participation in distinct flavors of reactivation.


Assuntos
Aprendizagem por Discriminação/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Sinais (Psicologia) , Alimentos , Privação de Alimentos/fisiologia , Camundongos , Recompensa
17.
Curr Opin Neurobiol ; 49: 16-23, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29125986

RESUMO

Physiological need states and associated motivational drives can bias visual processing of cues that help meet these needs. Human neuroimaging studies consistently show a hunger-dependent, selective enhancement of responses to images of food in association cortex and amygdala. More recently, cellular-resolution imaging combined with circuit mapping experiments in behaving mice have revealed underlying neuronal population dynamics and enabled tracing of pathways by which hunger circuits influence the assignment of value to visual objects in visual association cortex, insular cortex, and amygdala. These experiments begin to provide a mechanistic understanding of motivation-specific neural processing of need-relevant cues in healthy humans and in disease states such as obesity and other eating disorders.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Filtro Sensorial/fisiologia , Vias Visuais/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Animais , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Sinais (Psicologia) , Humanos , Fome/fisiologia , Camundongos , Motivação , Neuroimagem , Estimulação Luminosa , Vias Visuais/diagnóstico por imagem
18.
Neuron ; 100(4): 900-915.e9, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30318413

RESUMO

The response of a cortical neuron to a motivationally salient visual stimulus can reflect a prediction of the associated outcome, a sensitivity to low-level stimulus features, or a mix of both. To distinguish between these alternatives, we monitored responses to visual stimuli in the same lateral visual association cortex neurons across weeks, both prior to and after reassignment of the outcome associated with each stimulus. We observed correlated ensembles of neurons with visual responses that either tracked the same predicted outcome, the same stimulus orientation, or that emerged only following new learning. Visual responses of outcome-tracking neurons encoded "value," as they demonstrated a response bias to salient, food-predicting cues and sensitivity to reward history and hunger state. Strikingly, these attributes were not evident in neurons that tracked stimulus orientation. Our findings suggest a division of labor between intermingled ensembles in visual association cortex that encode predicted value or stimulus identity.


Assuntos
Estimulação Luminosa/métodos , Recompensa , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Previsões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Visual/citologia
20.
Neuron ; 93(1): 57-65, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27989461

RESUMO

Ingestion of water and food are major hypo- and hyperosmotic challenges. To protect the body from osmotic stress, posterior pituitary-projecting, vasopressin-secreting neurons (VPpp neurons) counter osmotic perturbations by altering their release of vasopressin, which controls renal water excretion. Vasopressin levels begin to fall within minutes of water consumption, even prior to changes in blood osmolality. To ascertain the precise temporal dynamics by which water or food ingestion affect VPpp neuron activity, we directly recorded the spiking and calcium activity of genetically defined VPpp neurons. In states of elevated osmolality, water availability rapidly decreased VPpp neuron activity within seconds, beginning prior to water ingestion, upon presentation of water-predicting cues. In contrast, food availability following food restriction rapidly increased VPpp neuron activity within seconds, but only following feeding onset. These rapid and distinct changes in activity during drinking and feeding suggest diverse neural mechanisms underlying anticipatory regulation of VPpp neurons.


Assuntos
Arginina Vasopressina/metabolismo , Comportamento de Ingestão de Líquido/fisiologia , Comportamento Alimentar/fisiologia , Neurônios/fisiologia , Pressão Osmótica , Animais , Sinais (Psicologia) , Camundongos , Neurônios/metabolismo , Concentração Osmolar , Núcleo Supraóptico/citologia , Vasopressinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa