Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 132(8): 849-860, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-29921614

RESUMO

Anthrax infections exhibit progressive coagulopathies that may contribute to the sepsis pathophysiology observed in fulminant disease. The hemostatic imbalance is recapitulated in primate models of late-stage disease but is uncommon in toxemic models, suggesting contribution of other bacterial pathogen-associated molecular patterns (PAMPs). Peptidoglycan (PGN) is a bacterial PAMP that engages cellular components at the cross talk between innate immunity and hemostasis. We hypothesized that PGN is critical for anthrax-induced coagulopathies and investigated the activation of blood coagulation in response to a sterile PGN infusion in primates. The PGN challenge, like the vegetative bacteria, induced a sepsis-like pathophysiology characterized by systemic inflammation, disseminated intravascular coagulation (DIC), organ dysfunction, and impaired survival. Importantly, the hemostatic impairment occurred early and in parallel with the inflammatory response, suggesting direct engagement of coagulation pathways. PGN infusion in baboons promoted early activation of contact factors evidenced by elevated protease-serpin complexes. Despite binding to contact factors, PGN did not directly activate either factor XII (FXII) or prekallikrein. PGN supported contact coagulation by enhancing enzymatic function of active FXII (FXIIa) and depressing its inhibition by antithrombin. In parallel, PGN induced de novo monocyte tissue factor expression in vitro and in vivo, promoting extrinsic clotting reactions at later stages. Activation of platelets further amplified the procoagulant state during PGN challenge, leading to DIC and subsequent ischemic damage of peripheral tissues. These data indicate that PGN may be a major cause for the pathophysiologic progression of Bacillus anthracis sepsis and is the primary PAMP behind the pathogen-induced coagulopathy in late-stage anthrax.


Assuntos
Antraz/metabolismo , Bacillus anthracis , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Intravascular Disseminada/sangue , Monócitos/metabolismo , Animais , Antraz/patologia , Coagulação Intravascular Disseminada/induzido quimicamente , Coagulação Intravascular Disseminada/patologia , Fator XIIa/metabolismo , Feminino , Masculino , Monócitos/patologia , Papio , Papio anubis , Pré-Calicreína/metabolismo
2.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29531132

RESUMO

We showed that human IgG supported the response by human innate immune cells to peptidoglycan (PGN) from Bacillus anthracis and PGN-induced complement activation. However, other serum constituents have been shown to interact with peptidoglycan, including the IgG-like soluble pattern recognition receptor serum amyloid P (SAP). Here, we compared the abilities of SAP and of IgG to support monocyte and complement responses to PGN. Utilizing in vitro methods, we demonstrate that SAP is superior to IgG in supporting monocyte production of cytokines in response to PGN. Like IgG, the response supported by SAP was enhanced by phagocytosis and signaling kinases, such as Syk, Src, and phosphatidylinositol 3-kinase, that are involved in various cellular processes, including Fc receptor signaling. Unlike IgG, SAP had no effect on the activation of complement in response to PGN. These data demonstrate an opsonophagocytic role for SAP in response to PGN that propagates a cellular response without propagating the formation of the terminal complement complex.


Assuntos
Bacillus anthracis/imunologia , Imunidade Inata/imunologia , Imunoglobulina G/imunologia , Peptidoglicano/imunologia , Componente Amiloide P Sérico/imunologia , Humanos
3.
Blood Adv ; 3(16): 2436-2447, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31416821

RESUMO

Disseminated intravascular coagulation is a frequent manifestation during bacterial infections and is associated with negative clinical outcomes. Imbalanced expression and activity of intravascular tissue factor (TF) is central to the development of infection-associated coagulopathies. Recently, we showed that anthrax peptidoglycan (PGN) induces disseminated intravascular coagulation in a nonhuman primate model of anthrax sepsis. We hypothesized that immune recognition of PGN by monocytes is critical for procoagulant responses to PGN and investigated whether and how PGN induces TF expression in primary human monocytes. We found that PGN induced monocyte TF expression in a large cohort of healthy volunteers similar to lipopolysaccharide stimulation. Both immune and procoagulant responses to PGN involve intracellular recognition after PGN internalization, as well as surface signaling through immune Fcγ receptors (FcγRs). In line with our hypothesis, blocking immune receptor function, both signaling and FcγR-mediated phagocytosis, significantly reduced but did not abolish PGN-induced monocyte TF expression, indicating that FcγR-independent internalization contributes to intracellular recognition of PGN. Conversely, when intracellular PGN recognition is abolished, TF expression was sensitive to inhibitors of FcγR signaling, indicating that surface engagement of monocyte immune receptors can promote TF expression. The primary procoagulant responses to PGN were further amplified by proinflammatory cytokines through paracrine and autocrine signaling. Despite intersubject variability in the study cohort, dual neutralization of tumor necrosis factor-α and interleukin-1ß provided the most robust inhibition of the procoagulant amplification loop and may prove useful for reducing coagulopathies in gram-positive sepsis.


Assuntos
Antraz/imunologia , Coagulação Sanguínea/imunologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Peptidoglicano/imunologia , Transdução de Sinais , Biomarcadores , Coagulação Sanguínea/efeitos dos fármacos , Brefeldina A/farmacologia , Citometria de Fluxo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/imunologia , Monócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tromboplastina/metabolismo
4.
PLoS One ; 13(2): e0193207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474374

RESUMO

Peptidoglycan (PGN), a major component of bacterial cell walls, is a pathogen-associated molecular pattern (PAMP) that causes innate immune cells to produce inflammatory cytokines that escalate the host response during infection. In order to better understand the role of PGN in infection, we wanted to gain insight into the cellular receptor for PGN. Although the receptor was initially identified as Toll-like receptor 2 (TLR2), this receptor has remained controversial and other PGN receptors have been reported. We produced PGN from live cultures of Bacillus anthracis and Staphylococcus aureus and tested samples of PGN isolated during the purification process to determine at what point TLR2 activity was removed, if at all. Our results indicate that although live B. anthracis and S. aureus express abundant TLR2 ligands, highly-purified PGN from either bacterial source is not recognized by TLR2.


Assuntos
Bacillus anthracis/química , Imunidade Inata/efeitos dos fármacos , Peptidoglicano/farmacologia , Staphylococcus aureus/química , Receptor 2 Toll-Like/imunologia , Animais , Bacillus anthracis/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Peptidoglicano/química , Peptidoglicano/imunologia , Staphylococcus aureus/imunologia , Receptor 2 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa