Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 33(41): 10936-10950, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28931282

RESUMO

Hydrated lime (Ca(OH)2) is a vernacular art and building material produced following slaking of CaO in water. If excess water is used, a slurry, called lime putty, forms, which has been the preferred craftsman selection for formulating lime mortars since Roman times. A variety of natural additives were traditionally added to the lime putty to improve its quality. The mucilaginous juice extracted from nopal cladodes has been and still is used as additive incorporated in the slaking water for formulation of lime mortars and plasters, both in ancient Mesoamerica and in the USA Southwest. Little is known on the ultimate effects of this additive on the crystallization and microstructure of hydrated lime. Here, we show that significant changes in habit and size of portlandite crystals occur following slaking in the presence of nopal juice as well as compositionally similar citrus pectin. Both additives contain polysaccharides made up of galacturonic acid and neutral sugar residues. The carboxyl (and hydroxyl) functional groups present in these residues and in their alkaline degradation byproducts, which are deprotonated at the high pH (12.4) produced during lime slaking, strongly interact with newly formed Ca(OH)2 crystals acting in two ways: (a) as nucleation inhibitors, promoting the formation of nanosized crystals, and (b) as habit modifiers, favoring the development of planar habit following their adsorption onto positively charged (0001)Ca(OH)2 faces. Adsorption of polysaccharides on Ca(OH)2 crystals prevents the development of large particles, resulting in a very reactive, nanosized portlandite slurry. It also promotes steric stabilization, which limits aggregation, thus enhancing the colloidal nature of the lime putty. Overall, these effects are very favorable for the preparation of highly plastic lime mortars with enhanced properties.

2.
Nat Commun ; 8(1): 768, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974672

RESUMO

Although calcium oxalates are relevant biominerals, their formation mechanisms remain largely unresolved. Here, we investigate the early stages of calcium oxalate formation in pure and citrate-bearing solutions. Citrate is used as a well-known oxalate precipitation inhibitor; moreover, it resembles the functional domains of the biomolecules that modulate biomineralization. Our data suggest that calcium oxalate forms after Ca2+ and C2O42- association into polynuclear stable complexes that aggregate into larger assemblies, from which amorphous calcium oxalate nucleates. Previous work has explained citrate inhibitory effects according to classical theories. Here we show that citrate interacts with all early stage CaC2O4 species (polynuclear stable complexes and amorphous precursors), inhibiting calcium oxalate nucleation by colloidal stabilization of polynuclear stable complexes and amorphous calcium oxalate. The control that citrate exerts on calcium oxalate biomineralization may thus begin earlier than previously thought. These insights provide information regarding the mechanisms governing biomineralization, including pathological processes (e.g., kidney stone formation).The formation mechanism of abundant calcium oxalate biomaterials is unresolved. Here the authors show the early stages of calcium oxalate formation in pure and citrate-bearing solutions by using a titration set-up in conjunction with solution quenching, transmission electron microscopy and analytical ultracentrifugation.


Assuntos
Oxalato de Cálcio/metabolismo , Ácido Cítrico/metabolismo , Cálculos Renais/metabolismo , Precipitação Química , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa