Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Small ; 14(9)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29377529

RESUMO

One challenge of integrating of passive, microparticles manipulation techniques into multifunctional microfluidic devices is coupling the continuous-flow format of most systems with the often batch-type operation of particle separation systems. Here, a passive fluidic technique-one-way particle transport-that can conduct microparticle operations in a closed fluidic circuit is presented. Exploiting pass/capture interactions between microparticles and asymmetric traps, this technique accomplishes a net displacement of particles in an oscillatory flow field. One-way particle transport is achieved through four kinds of trap-particle interactions: mechanical capture of the particle, asymmetric interactions between the trap and the particle, physical collision of the particle with an obstacle, and lateral shift of the particle into a particle-trapping stream. The critical dimensions for those four conditions are found by numerically solving analytical mass balance equations formulated using the characteristics of the flow field in periodic obstacle arrays. Visual observation of experimental trap-particle dynamics in low Reynolds number flow (<0.01) confirms the validity of the theoretical predictions. This technique can transport hundreds of microparticles across trap rows in only a few fluid oscillations (<500 ms per oscillation) and separate particles by their size differences.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Dispositivos Lab-On-A-Chip , Tamanho da Partícula
2.
Anal Chem ; 89(17): 8748-8756, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28774174

RESUMO

Leakage of lead and other heavy metals into drinking water is a significant health risk and one that is not easily detected. We have developed simple sensors containing only platinum electrodes for the detection of heavy metal contamination in drinking water. The two-electrode sensor can identify the existence of a variety of heavy metals in drinking water, and the four-electrode sensor can distinguish lead from other heavy metals in solution. No false-positive response is generated when the sensors are placed in simulated and actual tap water contaminated by heavy metals. Lead detection on the four-electrode sensor is not affected by the presence of common ions in tap water. Experimental results suggest the sensors can be embedded in water service lines for long-time use until lead or other heavy metals are detected. With its low cost (∼$0.10/sensor) and the possibility of long-term operation, the sensors are ideal for heavy metal detection of drinking water.


Assuntos
Água Potável/análise , Técnicas Eletroquímicas/instrumentação , Chumbo/análise , Poluentes Químicos da Água/análise , Impedância Elétrica , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/métodos , Eletrodos , Platina/química
3.
Anal Chem ; 89(7): 3996-4006, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28240541

RESUMO

Viscosity measurements have a wide range of applications from industrial chemical production to medical diagnosis. In this work, we have developed a simple droplet-based, water-in-oil continuous viscometer capable of measuring viscosity changes in 10 s or less and consuming a total sample volume of less than 1 µL/h. The viscometer employs a flow-focusing geometry and generates droplets under constant pressure. The length of the droplets (Ld) is highly correlated to the aqueous-phase viscosity (µaq) at high ratios of aqueous-inlet to oil-inlet pressure (AIP/OIP), yielding a linear relationship between µaq and 1/(Ld - Lc) where Lc is the minimal obtainable droplet length and approximately equals to the width of the droplet-generating channel. Theoretical analysis verifies this linear relationship, and the resulting equations can be used to optimize the design of the device such as the channel width, depth, and length. The viscometer can be used for Newtonian fluids and, by accurately calculating the shear rate, for non-Newtonian fluids such as Boger fluids and shear thinning fluids. In these latter cases, the shear rates depend on the velocity of the aqueous phase and can be adjusted by varying the input pressures. The applicable range of viscosity measurements depends on the oil-phase viscosity (µoil), and viscosities within the range of 0.01-10 µoil can be measured reliably with less than 5% error.

4.
Sensors (Basel) ; 17(7)2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28753913

RESUMO

Monitoring of the pH, oxidation-reduction-potential (ORP), and conductivity of aqueous samples is typically performed using multiple sensors. To minimize the size and cost of these sensors for practical applications, we have investigated the use of a single sensor constructed with only bare platinum electrodes deposited on a glass substrate. The sensor can measure pH from 4 to 10 while simultaneously measuring ORP from 150 to 800 mV. The device can also measure conductivity up to 8000 µS/cm in the range of 10 °C to 50 °C, and all these measurements can be made even if the water samples contain common ions found in residential water. The sensor is inexpensive (i.e., ~$0.10/unit) and has a sensing area below 1 mm², suggesting that the unit is cost-efficient, robust, and widely applicable, including in microfluidic systems.

5.
Biosensors (Basel) ; 13(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36979543

RESUMO

Urinary chloride concentration is a valuable health metric that can aid in the early detection of serious conditions, such as acid base disorders, acute heart failure, and incidences of acute renal failure in the intensive care unit. Physiologically, urinary chloride levels frequently change and are difficult to measure, involving time-consuming and inconvenient lab testing. Thus, near real-time simple sensors are needed to quickly provide actionable data to inform diagnostic and treatment decisions that affect health outcomes. Here, we introduce a chronopotentiometric sensor that utilizes commercially available screen-printed electrodes to accurately quantify clinically relevant chloride concentrations (5-250 mM) in seconds, with no added reagents or electrode surface modification. Initially, the sensor's performance was optimized through the proper selection of current density at a specific chloride concentration, using electrical response data in conjunction with scanning electron microscopy. We developed a unique swept current density algorithm to resolve the entire clinically relevant chloride concentration range, and the chloride sensors can be reliably reused for chloride concentrations less than 50 mM. Lastly, we explored the impact of pH, temperature, conductivity, and additional ions (i.e., artificial urine) on the sensor signal, in order to determine sensor feasibility in complex biological samples. This study provides a path for further development of a portable, near real-time sensor for the quantification of urinary chloride.


Assuntos
Cloretos , Técnicas Eletroquímicas , Eletrodos , Microscopia Eletrônica de Varredura
6.
Anal Chem ; 84(12): 5250-6, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22507307

RESUMO

The long turnaround time in antimicrobial susceptibility testing (AST) endangers patients and encourages the administration of wide spectrum antibiotics, thus resulting in alarming increases of multidrug resistant pathogens. A method for faster detection of bacterial proliferation presents one avenue toward addressing this global concern. We report on a label-free asynchronous magnetic bead rotation (AMBR) based viscometry method that rapidly detects bacterial growth and determines drug sensitivity by measuring changes in the suspension's viscosity. With this platform, we observed the growth of a uropathogenic Escherichia coli isolate, with an initial concentration of 50 cells per drop, within 20 min; in addition, we determined the gentamicin minimum inhibitory concentration (MIC) of the E. coli isolate within 100 min. We thus demonstrated a label-free, microviscometer platform that can measure bacterial growth and drug susceptibility more rapidly, with lower initial bacterial counts than existing commercial systems, and potentially with any microbial strains.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Imãs , Microesferas , Microtecnologia/instrumentação , Rotação , Gentamicinas/farmacologia , Fatores de Tempo , Viscosidade
7.
Proc Natl Acad Sci U S A ; 106(31): 12617-22, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19620719

RESUMO

Performance and utility of microfluidic systems are often overshadowed by the difficulties and costs associated with operation and control. As a step toward the development of a more efficient platform for microfluidic control, we present a distributed pressure generation scheme whereby independently tunable pressure sources can be simultaneously controlled by using a single acoustic source. We demonstrate how this scheme can be used to perform precise droplet positioning as well as merging, splitting, and sorting within open microfluidic networks. We further show how this scheme can be implemented for control of continuous-flow systems, specifically for generation of acoustically tunable liquid gradients. Device operation hinges on a resonance-decoding and rectification mechanism by which the frequency content in a composite acoustic input is decomposed into multiple independently buffered output pressures. The device consists of a bank of 4 uniquely tuned resonance cavities (404, 484, 532, and 654 Hz), each being responsible for the actuation of a single droplet, 4 identical flow-rectification structures, and a single acoustic source. Cavities selectively amplify resonant tones in the input signal, resulting in highly elevated local cavity pressures. Fluidic-rectification structures then serve to convert the elevated oscillating cavity pressures into unidirectional flows. The resulting pressure gradients, which are used to manipulate fluids in a microdevice, are tunable over a range of approximately 0-200 Pa with a control resolution of 10 Pa.


Assuntos
Técnicas Analíticas Microfluídicas , Acústica , Pressão
8.
Biomicrofluidics ; 16(4): 044106, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35935121

RESUMO

Microfluidic devices are typically fabricated in an expensive, multistep process (e.g., photolithography, etching, and bonding). Additive manufacturing (AM) has emerged as a revolutionary technology for simple and inexpensive fabrication of monolithic structures-enabling microfluidic designs that are challenging, if not impossible, to make with existing fabrication techniques. Here, we introduce volumetric stereolithography (vSLA), an AM method in which polymerization is constrained to specific heights within a resin vat, allowing layer-by-layer fabrication without a moving platform. vSLA uses an existing dual-wavelength chemistry that polymerizes under blue light (λ = 458 nm) and inhibits polymerization under UV light (λ = 365 nm). We apply vSLA to fabricate microfluidic channels with different spatial and vertical geometries in less than 10 min. Channel heights ranged from 400 µm to 1 mm and could be controlled with an optical dose, which is a function of blue and UV light intensities and exposure time. Oxygen in the resin was found to significantly increase the amount of dose required for curing (i.e., polymerization to a gelled state), and we recommend that an inert vSLA system is used for rapid and reproducible microfluidic fabrication. Furthermore, we recommend polymerizing far beyond the gel point to form more rigid structures that are less susceptible to damage during post-processing, which can be done by simultaneously increasing the blue and UV light absorbance of the resin with light intensities. We believe that vSLA can simplify the fabrication of complex multilevel microfluidic devices, extending microfluidic innovation and availability to a broader community.

9.
Anal Chem ; 83(13): 5207-13, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21604670

RESUMO

Low-flow push-pull perfusion is a sampling method that yields better spatial resolution than competitive methods like microdialysis. Because of the low flow rates used (50 nL/min), it is challenging to use this technique at high temporal resolution which requires methods of collecting, manipulating, and analyzing nanoliter samples. High temporal resolution also requires control of Taylor dispersion during sampling. To meet these challenges, push-pull perfusion was coupled with segmented flow to achieve in vivo sampling at 7 s temporal resolution at 50 nL/min flow rates. By further miniaturizing the probe inlet, sampling with 200 ms resolution at 30 nL/min (pull only) was demonstrated in vitro. Using this method, L-glutamate was monitored in the striatum of anesthetized rats. Up to 500 samples of 6 nL each were collected at 7 s intervals, segmented by an immiscible oil and stored in a capillary tube. The samples were assayed offline for L-glutamate at a rate of 15 samples/min by pumping them into a reagent addition tee fabricated from Teflon where reagents were added for a fluorescent enzyme assay. Fluorescence of the resulting plugs was monitored downstream. Microinjection of 70 mM potassium in physiological buffered saline evoked l-glutamate concentration transients that had an average maxima of 4.5 ± 1.1 µM (n = 6 animals, 3-4 injections each) and rise times of 22 ± 2 s. These results demonstrate that low-flow push-pull perfusion with segmented flow can be used for high temporal resolution chemical monitoring and in complex biological environments.


Assuntos
Ácido Glutâmico/metabolismo , Animais , Encéfalo/metabolismo , Corantes Fluorescentes , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Fluorescência
10.
Biosensors (Basel) ; 11(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34562910

RESUMO

Traumatic brain injury (TBI) is a leading cause of global morbidity and mortality, partially due to the lack of sensitive diagnostic methods and efficacious therapies. Panels of protein biomarkers have been proposed as a way of diagnosing and monitoring TBI. To measure multiple TBI biomarkers simultaneously, we present a variable height microfluidic device consisting of a single channel that varies in height between the inlet and outlet and can passively multiplex bead-based immunoassays by trapping assay beads at the point where their diameter matches the channel height. We developed bead-based quantum dot-linked immunosorbent assays (QLISAs) for interleukin-6 (IL-6), glial fibrillary acidic protein (GFAP), and interleukin-8 (IL-8) using DynabeadsTM M-450, M-270, and MyOneTM, respectively. The IL-6 and GFAP QLISAs were successfully multiplexed using a variable height channel that ranged in height from ~7.6 µm at the inlet to ~2.1 µm at the outlet. The IL-6, GFAP, and IL-8 QLISAs were also multiplexed using a channel that ranged in height from ~6.3 µm at the inlet to ~0.9 µm at the outlet. Our system can keep pace with TBI biomarker discovery and validation, as additional protein biomarkers can be multiplexed simply by adding in antibody-conjugated beads of different diameters.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico , Imunoensaio , Lesões Encefálicas Traumáticas/imunologia , Proteína Glial Fibrilar Ácida , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas
11.
Biosensors (Basel) ; 11(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34562909

RESUMO

Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas , Humanos
12.
Lab Chip ; 10(10): 1308-15, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20445885

RESUMO

A droplet-based bioreaction microsystem has been developed with automated droplet generation and confinement. On-chip electronic sensing is employed to track the position of the droplets by sensing the oil/aqueous interface in real time. The sensing signal is also used to control the pneumatic supply for moving as well as automatically generating four different nanolitre-sized droplets. The actual size of droplets is very close to the designed droplet size with a standard deviation less than 3% of the droplet size. The automated droplet generation can be completed in less than 2 s, which is 5 times faster than using manual operation that takes at least 10 s. Droplets can also be automatically confined in the reaction region with feedback pneumatic control and digital or analog sensing. As an example bioreaction, PCR has been successfully performed in the automated generated droplets. Although the amplification yield was slightly reduced with the droplet confinement, especially while using the analog sensing method, adding additional reagents effectively alleviated this inhibition.


Assuntos
Procedimentos Analíticos em Microchip/métodos , Automação , Eletrodos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Óleos/química , Reação em Cadeia da Polimerase , Água/química
13.
Lab Chip ; 10(9): 1142-7, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20390132

RESUMO

Procedures requiring precise and accurate positioning of particles and cells have impacted a broad range of research interests including molecular detection, self-assembly and tissue and cell engineering. These fields would be greatly aided by more advanced, yet straightforward, micro-object positioning methods that are precise, scalable, responsive and flexible. We have developed an arrayed, multilayer surface patterned microfluidic device which uses laminar convective flow to actively position particles into any desired, two-dimensional, predesigned pattern. Objects including 10 microm polystyrene particles and Saccharomycodes ludwigii cells are rapidly (approximately 2 s) loaded onto vacuum-actuated holes, allowing us to both generate anisotropic particles and culture S. ludwigii cells. The device was further modified to individually control two sets of holes, adding control of pattern composition. With rapid, precise and adaptable operation, multilayer microfluidic devices should greatly assist in research where precise object placement and proximity is necessary.


Assuntos
Biopolímeros/química , Biopolímeros/isolamento & purificação , Técnicas de Cultura de Células/instrumentação , Separação Celular/instrumentação , Análise em Microsséries/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Micromanipulação/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
14.
Biomed Microdevices ; 12(3): 533-41, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20204702

RESUMO

A droplet-based microfluidic platform was used to perform on-chip droplet generation, merging and mixing for applications in multi-step reactions and assays. Submicroliter-sized droplets can be produced separately from three identical droplet-generation channels and merged together in a single chamber. Three different mixing strategies were used for mixing the merged droplet. For pure diffusion, the reagents were mixed in approximately 10 min. Using flow around the stationary droplet to induce circulatory flow within the droplet, the mixing time was decreased to approximately one minute. The shortest mixing time (10 s) was obtained with bidirectional droplet motion between the chamber and channel, and optimization could result in a total time of less than 1 s. We also tested this on-chip droplet generation and manipulation platform using a two-step thermal cycled bioreaction: nested TaqMan PCR. With the same concentration of template DNA, the two-step reaction in a well-mixed merged droplet shows a cycle threshold of approximately 6 cycles earlier than that in the diffusively mixed droplet, and approximately 40 cycles earlier than the droplet-based regular (single-step) TaqMan PCR.


Assuntos
Métodos Analíticos de Preparação de Amostras/instrumentação , DNA/química , Análise de Injeção de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Reação em Cadeia da Polimerase/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
15.
Macromol Rapid Commun ; 31(2): 196-201, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21590892

RESUMO

Particles combining multiple anisotropy dimensions offer possibilities for self-assembly that have not been extensively explored to date. The scope for assembly of microparticles in which the anisotropy dimensions of internal bond angle and chemical ordering have been varied is investigated. Colloidal assemblies with interesting open (i.e., non-close-packed) structures can be assembled from these building blocks. The structure of the assemblies formed is linked to the building block anisotropy because the steric constraints introduced induce deviations from close packing. Key challenges addressed in pursuit of these structures are parallelization of microfluidic synthesis methods, simulation to efficiently search the available anisotropy space, and methods that characterize the properties of the resulting assemblies. This combined program of synthesis, simulation, assembly, and characterization may be applied to develop design rules that guide efforts to fabricate microparticle building blocks and their assemblies.

16.
Lab Chip ; 20(14): 2510-2519, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32530023

RESUMO

Characterizing and isolating microparticles of different sizes is often desirable and essential for biological analysis. In this work, we present a new and straightforward technique to fabricate variable-height glass microchannels for size-based passive trapping of microparticles. The fabrication technique uses controlled non-uniform exposure to an etchant solution to create channels of arbitrary height that vary in a predetermined way from the inlet to the outlet. Channels that vary from 1 µm to over 20 µm in height along a length of approximately 6 cm are shown to effectively and reproducibly separate particles by size including particles whose diameters differ by less than 100 nm when the standard deviation in size is less than 0.66 µm. Additionally, healthy red blood cells and red blood cells chemically modified with glutaraldehyde to reduce their deformability were introduced into different channels. The healthy cells can flow into shallower heights, while the less deformable ones are trapped at deeper heights. The macroscopic visualization of microparticle separation in these devices in addition to their ease of use, simple fabrication, low cost, and small size suggest their viability in the final detection step of many bead-based assay protocols.


Assuntos
Micropartículas Derivadas de Células , Técnicas Analíticas Microfluídicas , Bioensaio , Eritrócitos
17.
Integr Biol (Camb) ; 12(11): 263-274, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33089329

RESUMO

While the 'unculturable' majority of the bacterial world is accessible with culture-independent tools, the inability to study these bacteria using culture-dependent approaches has severely limited our understanding of their ecological roles and interactions. To circumvent cultivation barriers, we utilize microfluidic droplets as localized, nanoliter-size bioreactors to co-cultivate subsets of microbial communities. This co-localization can support ecological interactions between a reduced number of encapsulated cells. We demonstrated the utility of this approach in the encapsulation and co-cultivation of droplet sub-communities from a fecal sample collected from a healthy human subject. With the whole genome amplification and metagenomic shotgun sequencing of co-cultivated sub-communities from 22 droplets, we observed that this approach provides accessibility to uncharacterized gut commensals for study. The recovery of metagenome-assembled genomes from one droplet sub-community demonstrated the capability to dissect the sub-communities with high-genomic resolution. In particular, genomic characterization of one novel member of the family Neisseriaceae revealed implications regarding its participation in fatty acid degradation and production of atherogenic intermediates in the human gut. The demonstrated genomic resolution and accessibility to the microbial 'dark matter' with this methodology can be applied to study the interactions of rare or previously uncultivated members of microbial communities.


Assuntos
Bactérias/genética , Metagenoma , Metagenômica/métodos , Técnicas Microbiológicas , Microbiota , Reatores Biológicos , Técnicas de Cocultura , Microbioma Gastrointestinal , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microfluídica , Família Multigênica , RNA Ribossômico 16S/metabolismo
18.
Biomicrofluidics ; 14(1): 014109, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31966348

RESUMO

A continuous microfluidic viscometer is used to measure blood coagulation. The viscometer operates by flowing oil and blood into a cross section where droplets are generated. At a set pressure, the length of the droplets is inversely proportional to the viscosity of the blood sample being delivered. Because blood viscosity increases during coagulation as the blood changes from a liquid to a solid gel, the device allows to monitor coagulation by simply measuring the drop length. Experiments with swine blood were carried out in its native state and with the addition of coagulation activators and inhibitors. The microfluidic viscometer detected an earlier initiation of the coagulation process with the activator and a later initiation with the inhibitor compared to their corresponding controls. The results from the viscometer were also compared with the clinical method of thromboelastography (TEG), which was performed concurrently for the same samples. The time to initiation of coagulation in the microfluidic viscometer was correlated with the reaction time in TEG. Additionally, the total time for the measurement of clot strengthening in TEG correlated with the time for the maximum viscosity observed in the microfluidic viscometer. The microfluidic viscometer measured changes in viscosity due to coagulation faster than TEG detected the clot formation. The present viscometer is a simple technology that can be used to further study the entire coagulation process.

19.
Lab Chip ; 9(21): 3131-43, 2009 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19823730

RESUMO

We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combinations of various logic circuits and receives pneumatically encoded serial commands at a single input line. The device then decodes the temporal command sequence by spatial parallelization, computes necessary logic calculations between parallelized command bits, stores command information for signal transportation and maintenance, and finally executes the command for the target devices. Thus, such pneumatic microprocessors will function as a universal on-chip control platform to perform complex parallel operations for large-scale integrated microfluidic devices. To demonstrate the working principles, we have built 2-bit, 3-bit, 4-bit, and 8-bit microprocessors to control various target devices for applications such as four color dye mixing, and multiplexed channel fluidic control. By significantly reducing the need for external controllers, the digital pneumatic microprocessor can be used as a universal on-chip platform to autonomously manipulate microfluids in a high throughput manner.


Assuntos
Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Microcomputadores , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Simulação por Computador , Dimetilpolisiloxanos/química
20.
Anal Chem ; 81(11): 4510-6, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19419189

RESUMO

Micromixing is a crucial step for biochemical reactions in microfluidic networks. A critical challenge is that the system containing micromixers needs numerous pumps, chambers, and channels not only for the micromixing but also for the biochemical reactions and detections. Thus, a simple and compatible design of the micromixer element for the system is essential. Here, we propose a simple, yet effective, scheme that enables micromixing and a biochemical reaction in a single microfluidic chamber without using any pumps. We accomplish this process by using natural convection in conjunction with alternating heating of two heaters for efficient micromixing, and by regulating capillarity for sample transport. As a model application, we demonstrate micromixing and subsequent polymerase chain reaction (PCR) for an influenza viral DNA fragment. This process is achieved in a platform of a microfluidic cartridge and a microfabricated heating-instrument with a fast thermal response. Our results will significantly simplify micromixing and a subsequent biochemical reaction that involves reagent heating in microfluidic networks.


Assuntos
Convecção , Técnicas Analíticas Microfluídicas/instrumentação , DNA Viral/genética , Desenho de Equipamento , Temperatura Alta , Alphainfluenzavirus/genética , Técnicas Analíticas Microfluídicas/métodos , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa