RESUMO
Nonselective glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists are efficacious in chronic pain but have significant tolerability issues, likely arising from the ubiquitous expression of AMPA receptors in the central nervous system (CNS). Recently, LY3130481 has been shown to selectively block AMPA receptors coassembled with the auxiliary protein, transmembrane AMPA receptor regulatory protein (TARP) γ8, which is highly expressed in the hippocampus but also in pain pathways, including anterior cingulate (ACC) and somatosensory cortices and the spinal cord, suggesting that selective blockade of γ8/AMPA receptors may suppress nociceptive signaling with fewer CNS side effects. The potency of LY3130481 on recombinant γ8-containing AMPA receptors was modulated by coexpression with other TARPs; γ2 subunits affected activity more than γ3 subunits. Consistent with these findings, LY3130481 had decreasing potency on receptors from rat hippocampal, cortical, spinal cord, and cerebellar neurons that was replicated in tissue from human brain. LY3130481 partially suppressed, whereas the nonselective AMPA antagonist GYKI53784 completely blocked, AMPA receptor-dependent excitatory postsynaptic potentials in ACC and spinal neurons in vitro. Similarly, LY3130481 attenuated short-term synaptic plasticity in spinal sensory neurons in vivo in response to stimulation of peripheral afferents. LY3130481 also significantly reduced nocifensive behaviors after intraplantar formalin that was correlated with occupancy of CNS γ8-containing AMPA receptors. In addition, LY3130481 dose-dependently attenuated established gait impairment after joint damage and tactile allodynia after spinal nerve ligation, all in the absence of motor side effects. Collectively, these data demonstrate that LY3130481 can suppress excitatory synaptic transmission and plasticity in pain pathways containing γ8/AMPA receptors and significantly reduce nocifensive behaviors, suggesting a novel, effective, and safer therapy for chronic pain conditions.
Assuntos
Canais de Cálcio/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Terapia de Alvo Molecular , Receptores de AMPA/metabolismo , Animais , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Dor Crônica/fisiopatologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Distribuição TecidualRESUMO
G protein-coupled receptors (GPCRs) often activate multiple signaling pathways, and ligands may evoke functional responses through individual pathways. These unique responses provide opportunities for biased or functionally selective ligands to preferentially modulate one signaling pathway over another. Studies with several GPCRs have suggested that selective activation of signaling pathways downstream of a GPCR may lead to safer and more effective drug therapies. The dopamine D2 receptor (D2R) is one of the main drug targets in the therapies for Parkinson's disease and schizophrenia. Recent studies suggest that selective modulation of individual signaling pathways downstream of the D2R may lead to safer antipsychotic drugs. In the present study, immediate effectors of the D2R (i.e., Gαi/o, Gßγ, ß-arrestin recruitment) and more complex signaling pathways (i.e., extracellular signal-regulated kinase phosphorylation, heterologous sensitization, and dynamic mass redistribution) were examined in response to a series of D2R ligands. This was accomplished using Chinese hamster ovary cells stably expressing the human D2L dopamine receptor in the PathHunter ß-Arrestin GPCR Assay Platform. The use of a uniform cellular background was designed to eliminate potential confounds associated with cell-to-cell variability, including expression levels of receptor as well as other components of signal transduction, including G protein subunits. Several well characterized and clinically relevant D2R ligands were evaluated across each signaling pathway in this cellular model. The most commonly used methods to measure ligand bias were compared. Functional selectivity analyses were also used as tools to explore the relative contribution of immediate D2R effectors for the activation of more complex signaling pathways.
Assuntos
Dopaminérgicos/farmacologia , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/fisiologia , Transdução de Sinais/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Ligantes , Ratos , Transdução de Sinais/efeitos dos fármacosRESUMO
A series of novel oxime carbamates have been identified as potent inhibitors of the key regulatory enzyme of the endocannabinoid signaling system, fatty acid amide hydrolase (FAAH). In this Letter, the rationale behind the discovery and the biological evaluations of this novel class of FAAH inhibitors are presented. Both in vitro and in vivo results of selected targets are discussed, along with inhibition kinetics and molecular modeling studies.(1).
Assuntos
Amidoidrolases/antagonistas & inibidores , Carbamatos/química , Descoberta de Drogas/métodos , Oximas/química , Oximas/farmacologia , Amidoidrolases/fisiologia , Animais , Moduladores de Receptores de Canabinoides/fisiologia , Carbamatos/metabolismo , Carbamatos/farmacologia , Linhagem Celular , Cristalografia por Raios X , Humanos , Oximas/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
Several tetrahydroimidazopyrimidines were prepared using silver assisted cyclization as the key step. The binding affinities of compounds thus prepared were evaluated in vitro toward hCRF(1)R. Initial lead compound 16 (K(i)=32 nM) demonstrated modest putative anxiolytic effects in the mouse canopy test. Further optimization using parallel synthesis provided compounds with K(i)'s <50 nM.
Assuntos
Desenho de Fármacos , Pirimidinas/síntese química , Pirimidinas/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Animais , Ciclização , Camundongos , Pirimidinas/químicaRESUMO
Relief from chronic pain continues to represent a large unmet need. The voltage-gated potassium channel Kv7.2/7.3, also known as KCNQ2/3, is a key contributor to the control of resting membrane potential and excitability in nociceptive neurons and represents a promising target for potential therapeutics. In this study, we present a medium throughput electrophysiological assay for the identification and characterization of modulators of Kv7.2/7.3 channels, using the IonWorks Barracuda™ automated voltage clamp platform. The assay combines a family of voltage steps used to construct conductance curves with a unique analysis method. Kv7.2/7.3 modulators shift the activation voltage and/or change the maximal conductance of the current, and both parameters have been used to quantify compound mediated effects. Both effects are expected to modulate neuronal excitability in vivo. The analysis method described assigns a single potency value that combines changes in activation voltage and maximal conductance and is expected to predict compound mediated changes in excitability.
Assuntos
Aminopiridinas/análise , Carbamatos/análise , Desenvolvimento de Medicamentos , Ensaios de Triagem em Larga Escala/instrumentação , Técnicas de Patch-Clamp/instrumentação , Fenilenodiaminas/análise , Aminopiridinas/farmacologia , Carbamatos/farmacologia , Células Cultivadas , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Fenilenodiaminas/farmacologiaRESUMO
BACKGROUND: Aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butoxy}-3,4-dihydro-2(1H)-quinolinone) is a novel antipsychotic with a mechanism of action that differs from current typical and atypical antipsychotics. Aripiprazole interacts with a range of receptors, including serotonin [5-hydroxytryptamine (5-HT)] and dopamine receptors. MATERIALS AND METHODS: This study examined aripiprazole's interactions with 5-HT systems in vitro and in vivo to further clarify its pharmacologic properties. RESULTS: Aripiprazole produced increases in [(35)S]GTPgammaS binding to rat hippocampal membranes. Its potency (pEC(50) = 7.2) was similar to that of ziprasidone (7.1) and greater than that of 5-HT (6.7) and buspirone (6.4), a 5-HT(1A)-receptor partial agonist, whereas its intrinsic activity was similar to that of ziprasidone and buspirone. The stimulatory effect of aripiprazole was blocked by WAY-100635, a 5-HT(1A)-receptor antagonist. In in vivo electrophysiology studies, aripiprazole produced a dose-related reduction in the firing rate of 5-HT-containing dorsal raphe neurons in rats, which was both prevented and reversed by WAY-100635 administration. Aripiprazole showed a high affinity for human 5-HT(1A) receptors (K (i) = 4.2 nM) using parietal cortex membrane preparations. In membranes from cells expressing human recombinant receptors, aripiprazole bound with high affinity to 5-HT(2A) receptors (K (i) = 3.4 nM), moderate affinity to 5-HT(2C) (K (i) = 15 nM) and 5-HT(7) (K (i) = 39 nM) receptors, and low affinity to 5-HT(6) receptors (K (i) = 214 nM) and 5-HT transporter (K (i) = 98 nM). In addition, aripiprazole potently blocked 5-HT(2A)-receptor-mediated increases in intracellular Ca(2+) levels in a rat pituitary cell line (IC(50) = 11 nM). DISCUSSION: These results support a partial agonist activity for aripiprazole at 5-HT(1A) receptors in vitro and in vivo, and suggest important interactions with other 5-HT-receptor subtypes. This receptor activity profile may contribute to the antipsychotic activity of aripiprazole in humans.
Assuntos
Antipsicóticos/farmacologia , Piperazinas/farmacologia , Quinolonas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Aripiprazol , Células CHO , Cálcio/metabolismo , Linhagem Celular , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletrofisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ensaio Radioligante , Núcleos da Rafe/citologia , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/fisiologia , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor 5-HT1 de Serotonina , Antagonistas do Receptor 5-HT1 de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologiaRESUMO
Voltage-gated calcium channels represent important drug targets. The implementation of higher throughput electrophysiology assays is necessary to characterize the interaction of test compounds with several conformational states of the channel, but has presented significant challenges. We report on the development of a high-throughput, automated electrophysiology assay for Cav2.2 on the IonWorks Barracuda™ platform. The assay provides an assessment of the potency of the test compound on the resting/closed and inactivated states of the channel in the same assay run. Inclusion of the heavy metal chelator 2,3-bis(sulfanyl)propane-1-sulfonate in the assay solutions improved the data quality by reversing a loss of current seen in wells directly above the ground electrodes. We hypothesize that the loss of current is caused by block of Cav2.2 currents by silver ions originating from the electrodes.
Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/metabolismo , Quelantes/farmacologia , Ensaios de Triagem em Larga Escala , Prata/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Eletrodos , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Ratos , Relação Estrutura-AtividadeRESUMO
Voltage-gated sodium channels represent important drug targets. The implementation of higher throughput electrophysiology assays is necessary to characterize the interaction of test compounds with several conformational states of the channel, but has presented significant challenges. We describe a novel high throughput approach to assess the effects of test agents on voltage-gated sodium currents. The multiple protocol mode of the automated electrophysiology instrument IonWorks Barracuda was used to control the level of inactivation and monitor current stability. Good temporal stability of currents and spatial uniformity of inactivation were obtained by optimizing the experimental conditions. The resulting assay allowed for robust assessment of state-dependent effects of test agents and enabled direct comparison of compound potency across several sodium channel subtypes at equivalent levels of inactivation.
Assuntos
Ensaios de Triagem em Larga Escala , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Amitriptilina/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Lidocaína/farmacologia , Técnicas de Patch-Clamp , Fenitoína/farmacologia , Relação Estrutura-Atividade , Tetracaína/farmacologiaRESUMO
N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that play an important role in synaptic plasticity and learning and memory formation. Malfunctioning of NMDARs, in particular the reduction in NMDAR activity, is thought to be implicated in major neurological disorders. NMDAR positive allosteric modulators (PAMs) represent potential therapeutic interventions for restoring normal NMDAR function. We report a novel screening approach for identification and characterization of NMDAR-PAMs. The approach combines high-throughput fluorescence imaging with automated electrophysiological recording of glutamate-evoked responses in HEK-293 cells expressing NR1/NR2A NMDAR subunits. Initial high-throughput screening (HTS) of a chemical library containing >810,000 compounds using a calcium flux assay in 1536-well plate format identified a total of 864 NMDAR-PAMs. Concentration response determination in both calcium flux and automated electrophysiological assays found several novel chemical series with EC50 values between 0.49 and 10 µM. A small subset (six series) was selected and analyzed for pharmacological properties, subtype selectivity, mode of action, and activity at native NMDARs. Our approach demonstrates the successful application of HTS functional assays that led to identification of NMDAR-PAMs providing the foundation for further medicinal chemistry work that may lead to novel therapies for treatment of cognitive impairment associated with Alzheimer's disease and schizophrenia.
Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Regulação Alostérica/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Cálcio/química , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologiaRESUMO
Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.
Assuntos
Anticonvulsivantes/farmacologia , Benzotiazóis/farmacologia , Cerebelo/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Prosencéfalo/efeitos dos fármacos , Pirazóis/farmacologia , Piridonas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Animais , Anticonvulsivantes/efeitos adversos , Canais de Cálcio/metabolismo , Cerebelo/metabolismo , Convulsivantes/toxicidade , Modelos Animais de Doenças , Tontura/induzido quimicamente , Epilepsia/induzido quimicamente , Camundongos , Nitrilas , Pentilenotetrazol/toxicidade , Prosencéfalo/metabolismo , Piridonas/efeitos adversos , Ratos , Receptores de AMPA/metabolismo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológicoRESUMO
Transmembrane AMPA receptor regulatory proteins (TARPs) are a family of scaffolding proteins that regulate AMPA receptor trafficking and function. TARP γ-8 is one member of this family and is highly expressed within the hippocampus relative to the cerebellum. A selective TARP γ-8-dependent AMPA receptor antagonist (TDAA) is an innovative approach to modulate AMPA receptors in specific brain regions to potentially increase the therapeutic index relative to known non-TARP-dependent AMPA antagonists. We describe here, for the first time, the discovery of a noncompetitive AMPA receptor antagonist that is dependent on the presence of TARP γ-8. Three major iteration cycles were employed to improve upon potency, CYP1A2-dependent challenges, and in vivo clearance. An optimized molecule, compound (-)-25 (LY3130481), was fully protective against pentylenetetrazole-induced convulsions in rats without the motor impairment associated with non-TARP-dependent AMPA receptor antagonists. Compound (-)-25 could be utilized to provide proof of concept for antiepileptic efficacy with reduced motor side effects in patients.
Assuntos
Canais de Cálcio/metabolismo , Descoberta de Drogas , Receptores de AMPA/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores de AMPA/metabolismoRESUMO
Aripiprazole is the first clinically approved atypical antipsychotic agent having dopamine D2 receptor partial agonist activities. To evaluate aripiprazole's agonist and antagonist properties, we established a Chinese hamster ovary cell line expressing high and low densities of the long and short isoforms of human dopamine D2 receptors, then compared its properties with 7-{3-[4-(2,3-dimethylphenyl)piperazinyl]propoxy}-2(1H)-quinolinone (OPC-4392), S(-)-3-(3-hydroxyphenyl)-N-n-propylpiperidine ((-)-3-PPP), and terguride (other partial agonists) using forskolin-stimulated cAMP accumulation as an index. In cells expressing high receptor densities, all partial agonists predominantly behaved as agonists. However, in cells expressing low receptor densities, the partial agonists showed significantly lower maximal effects than dopamine. Aripiprazole showed the lowest intrinsic activities. In addition, all compounds blocked the action of dopamine with a maximum effect equal to that of each compound alone. Aripiprazole's low intrinsic activities may account for the clinical finding that, unlike the other partial agonists, it is substantially active against both positive and negative symptoms of schizophrenia.
Assuntos
Lisurida/análogos & derivados , Piperazinas/metabolismo , Quinolonas/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Antipsicóticos/metabolismo , Antipsicóticos/farmacologia , Aripiprazol , Ligação Competitiva/efeitos dos fármacos , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colforsina/farmacologia , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , DNA Complementar/genética , Dopamina/metabolismo , Dopamina/farmacologia , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Haloperidol/metabolismo , Haloperidol/farmacologia , Humanos , Lisurida/metabolismo , Lisurida/farmacologia , Piperazinas/farmacologia , Piperidinas/metabolismo , Piperidinas/farmacologia , Quinolonas/farmacologia , Racloprida/metabolismo , Ensaio Radioligante , Receptores de Dopamina D2/genética , Risperidona/metabolismo , Risperidona/farmacologia , Transfecção , TrítioRESUMO
A highly convergent synthesis was developed for the novel dopamine agonist dinapsoline (12) (Ghosh, D.; Snyder, S. E.; Watts, V. J.; Mailman, R. B.; Nichols, D. E. 8,9-Dihydroxy-2,3,7, 11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline: A Potent Full Dopamine D(1) Agonist Containing a Rigid beta-Phenyldopamine Pharmacophore. J. Med. Chem. 1996, 39 (2), 549-555). The crucial step in the new synthesis was a free radical-initiated cyclization to give the complete dinapsoline framework. The improved synthesis required half as many steps as the original procedure (Nichols, D. E.; Mailman, R.; Ghosh, D. Preparation of novel naphtho[1,2,3-de]isoquinolines as dopamine receptor ligands. PCT Int. Appl. WO 9706799 A1, Feb 27, 1997). One of the late-stage intermediates (11) was resolved into a pair of enantiomers. From there, the (R)-(+)-12 (absolute configuration by X-ray) of dinapsoline was identified as the active enantiomer. In unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats, (+)-dinapsoline showed robust rotational behavior comparable to that of an external benchmark, trans-4,5,5a,6,7,11b-hexahydro-2-propyl-benzo[f]thieno[2,3-c]quinoline-9,10-diol, hydrochloride 18 (Michaelides, M. R.; Hong, Y. Preparation of heterotetracyclic compounds as dopamine agonists. PCT Int. Appl. WO 9422858 A1, Oct 13, 1994).
Assuntos
Agonistas de Dopamina/síntese química , Isoquinolinas/síntese química , Naftóis/síntese química , Animais , Linhagem Celular , Corpo Estriado/metabolismo , Cristalografia por Raios X , AMP Cíclico/biossíntese , Agonistas de Dopamina/farmacologia , Técnicas In Vitro , Isoquinolinas/farmacologia , Conformação Molecular , Naftóis/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , EstereoisomerismoRESUMO
Aripiprazole is a novel antipsychotic with a unique mechanism of action, which differs from currently marketed typical and atypical antipsychotics. Aripiprazole has been shown to be a partial agonist at the D(2) family of dopamine (DA) receptors in biochemical and pharmacological studies. To demonstrate aripiprazole's action as a partial D(2) agonist in pituitary cells at the molecular level, we retrovirally transduced the short (D(2S)) and the long (D(2L)) form of the human DA D(2) receptor gene into a rat pituitary cell line, GH4C1. [(3)H]-raclopride saturation binding analyses revealed a B(max) value approximately four-fold higher at D(2S) receptor-expressing GH4C1 cells than at D(2L) receptor-expressing GH4C1 cells, while a K(d) value was similar. Aripiprazole inhibited forskolin-stimulated release of prolactin in both D(2S) and D(2L) receptor-expressing GH4C1 cells, whereas the maximal inhibition of prolactin release was less than that of DA. Similarly, aripiprazole partially inhibited forskolin-induced cAMP accumulation in both D(2) receptor-expressing cells. Aripiprazole antagonized the suppression attained by DA (10(-7) M) in both D(2) receptor-expressing cells and, at the maximal blockade of cAMP, yielded residual cAMP levels equal to those produced by aripiprazole alone. These results indicate that aripiprazole acts as a partial agonist at both D(2S) and D(2L) receptors expressed in GH4C1 cells. These data may explain, at least in part, the observations that aripiprazole shows a novel antipsychotic activity with minimal potential for adverse events including no significant increase of serum prolactin levels in clinical studies.
Assuntos
Adenilil Ciclases/metabolismo , Antipsicóticos/farmacologia , Piperazinas/farmacologia , Prolactina/metabolismo , Quinolonas/farmacologia , Receptores de Dopamina D2/agonistas , Animais , Aripiprazol , Linhagem Celular , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Camundongos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/metabolismo , Ratos , Receptores de Dopamina D2/metabolismoRESUMO
Catalepsy and changes in striatal and limbic dopamine metabolism were investigated in mice after oral administration of aripiprazole, haloperidol, and risperidone. Catalepsy duration decreased with chronic (21 day) aripiprazole compared with acute (single dose) treatment across a wide dose range, whereas catalepsy duration persisted with chronic haloperidol treatment. At the time of maximal catalepsy, acute aripiprazole did not alter neostriatal dopamine metabolite/dopamine ratios or homovanillic acid (HVA) levels, and produced small increases in dihydroxyphenylacetic acid (DOPAC). Effects were similar in the olfactory tubercle. Dopamine metabolism was essentially unchanged in both regions after chronic aripiprazole. Acute treatments with haloperidol or risperidone elevated DOPAC, HVA, and metabolite/dopamine ratios in both brain areas and these remained elevated with chronic treatment. The subtle effects of aripiprazole on striatal and limbic dopamine metabolism, and the decrease in catalepsy with chronic administration, illustrate fundamental differences in dopamine neurochemical actions and behavioral sequelae of aripiprazole compared to haloperidol or risperidone.
Assuntos
Antipsicóticos/toxicidade , Catalepsia/metabolismo , Dopamina/metabolismo , Administração Oral , Animais , Aripiprazol , Catalepsia/induzido quimicamente , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Haloperidol/toxicidade , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Piperazinas/toxicidade , Quinolonas/toxicidade , Risperidona/toxicidade , Fatores de TempoRESUMO
The antipsychotic efficacy of aripiprazole is not generally associated with extrapyramidal symptoms, cardiovascular effects, sedation or elevations in serum prolactin that characterize typical or atypical antipsychotics. The aim of this study was to clarify the mechanism of action of aripiprazole that underlies its favourable clinical profiles. The preclinical efficacy and side-effect profiles of aripiprazole were evaluated using several pharmaco-behavioural test systems in mice and rats, both in vivo and ex vivo, and compared with those of other conventional and atypical antipsychotics. Each of the antipsychotics induced catalepsy and inhibited apomorphine-induced stereotypy. The catalepsy liability ratios for these drugs were 6.5 for aripiprazole, 4.7 for both olanzapine and risperidone. The ptosis liability ratios for aripiprazole, olanzapine and risperidone were 14, 7.2 and 3.3, respectively. Aripiprazole slightly increased DOPA accumulation in the forebrain of reserpinised mice, reduced 5-HTP accumulation at the highest dose and exhibited a weaker inhibition of 5-methoxy-N,N-dimethyl-tryptamine-induced head twitches. Aripiprazole did not inhibit physostigmine- or norepinephrine-induced lethality in rats. In conclusion, aripiprazole shows a favourable preclinical efficacy and side-effect profile compared to a typical antipsychotics. This profile may result from its high affinity partial agonist activity at D2 and 5-HT1A receptors and its antagonism of 5-HT2A receptors.
Assuntos
Antipsicóticos/efeitos adversos , Antipsicóticos/farmacologia , Piperazinas/efeitos adversos , Piperazinas/farmacologia , Quinolonas/efeitos adversos , Quinolonas/farmacologia , Animais , Antipsicóticos/administração & dosagem , Aripiprazol , Benzodiazepinas/efeitos adversos , Benzodiazepinas/farmacologia , Blefaroptose/induzido quimicamente , Catalepsia/induzido quimicamente , Di-Hidroxifenilalanina/biossíntese , Relação Dose-Resposta a Droga , Movimentos da Cabeça/efeitos dos fármacos , Masculino , Metoxidimetiltriptaminas/efeitos adversos , Metoxidimetiltriptaminas/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos ICR , Olanzapina , Piperazinas/administração & dosagem , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Quinolonas/administração & dosagem , Ratos , Ratos Wistar , Risperidona/administração & dosagem , Risperidona/efeitos adversos , Risperidona/farmacologia , Serotonina/biossíntese , Comportamento Estereotipado/efeitos dos fármacosRESUMO
Sensitization of adenylyl cyclase (AC) signaling has been implicated in a variety of neuropsychiatric and neurologic disorders including substance abuse and Parkinson's disease. Acute activation of Gαi/o-linked receptors inhibits AC activity, whereas persistent activation of these receptors results in heterologous sensitization of AC and increased levels of intracellular cAMP. Previous studies have demonstrated that this enhancement of AC responsiveness is observed both in vitro and in vivo following the chronic activation of several types of Gαi/o-linked receptors including D2 dopamine and µ opioid receptors. Although heterologous sensitization of AC was first reported four decades ago, the mechanism(s) that underlie this phenomenon remain largely unknown. The lack of mechanistic data presumably reflects the complexity involved with this adaptive response, suggesting that nonbiased approaches could aid in identifying the molecular pathways involved in heterologous sensitization of AC. Previous studies have implicated kinase and Gbγ signaling as overlapping components that regulate the heterologous sensitization of AC. To identify unique and additional overlapping targets associated with sensitization of AC, the development and validation of a scalable cAMP sensitization assay is required for greater throughput. Previous approaches to study sensitization are generally cumbersome involving continuous cell culture maintenance as well as a complex methodology for measuring cAMP accumulation that involves multiple wash steps. Thus, the development of a robust cell-based assay that can be used for high throughput screening (HTS) in a 384 well format would facilitate future studies. Using two D2 dopamine receptor cellular models (i.e. CHO-D2L and HEK-AC6/D2L), we have converted our 48-well sensitization assay (>20 steps 4-5 days) to a five-step, single day assay in 384-well format. This new format is amenable to small molecule screening, and we demonstrate that this assay design can also be readily used for reverse transfection of siRNA in anticipation of targeted siRNA library screening.
Assuntos
Adenilil Ciclases/metabolismo , Ensaios de Triagem em Larga Escala/métodos , RNA Interferente Pequeno/análise , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Miniaturização/métodos , RNA Interferente Pequeno/genética , Ratos , Receptores de Dopamina D2/metabolismo , TransfecçãoRESUMO
7-Aryl-6,7-dihydroimidazoimidazoles represent a novel series of high-affinity corticotropin-releasing factor 1 receptor antagonists. Here, we report their synthesis and SAR as well as behavioral activity of two exemplary compounds, 7b and 7k, in a mouse canopy model of anxiety.
Assuntos
Ansiolíticos/síntese química , Imidazóis/síntese química , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Animais , Ansiolíticos/farmacocinética , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Barreira Hematoencefálica , Hormônio Liberador da Corticotropina , Humanos , Imidazóis/farmacocinética , Imidazóis/farmacologia , Camundongos , Ratos , Relação Estrutura-AtividadeRESUMO
Aripiprazole is the first next-generation atypical antipsychotic with a mechanism of action that differs from currently marketed typical and atypical antipsychotics. Aripiprazole displays properties of an agonist and antagonist in animal models of dopaminergic hypoactivity and hyperactivity, respectively. This study examined the interactions of aripiprazole with a single population of human D2 receptors to clarify further its pharmacologic properties. In membranes prepared from Chinese hamster ovary cells that express recombinant D2L receptors, aripiprazole bound with high affinity to both the G protein-coupled and uncoupled states of receptors. Aripiprazole potently activated D2 receptor-mediated inhibition of cAMP accumulation. Partial receptor inactivation using the alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) significantly reduced the maximum effect of aripiprazole on inhibition of cAMP accumulation. This effect was seen with concentrations of EEDQ that did not alter the maximal inhibitory effect of dopamine. Consistent with the expected effects of a partial agonist, increasing concentrations of aripiprazole blocked the action of dopamine with maximal blockade equal to the agonist effect of aripiprazole alone. The efficacy of aripiprazole relative to that of dopamine varied from 25% in cells that lacked spare receptors for dopamine to 90% in cells with receptor reserve. These results, together with previous studies demonstrating partial agonist activity at serotonin 5-hydroxytryptamine (5-HT)1A receptors and antagonist activity at 5-HT2A receptors, support the identification of aripiprazole as a dopamine-serotonin system stabilizer. The receptor activity profile may underlie the unique activity of aripiprazole in animals and its antipsychotic activity in humans.