RESUMO
We conducted a field study at a K-12 private school in the suburbs of Melbourne, Australia. The data capture contained two elements: First, a 5-month longitudinal field study In-Gauge using two outdoor weather stations, as well as indoor weather stations in 17 classrooms and temperature sensors on the vents of occupant-controlled room air-conditioners; these were collated into individual datasets for each classroom at a 5-minute logging frequency, including additional data on occupant presence. The dataset was used to derive predictive models of how occupants operate room air-conditioning units. Second, we tracked 23 students and 6 teachers in a 4-week cross-sectional study En-Gage, using wearable sensors to log physiological data, as well as daily surveys to query the occupants' thermal comfort, learning engagement, emotions and seating behaviours. Overall, the combined dataset could be used to analyse the relationships between indoor/outdoor climates and students' behaviours/mental states on campus, which provide opportunities for the future design of intelligent feedback systems to benefit both students and staff.
Assuntos
Comportamento , Emoções , Dispositivos Eletrônicos Vestíveis , Ar Condicionado , Clima , Estudos Transversais , Conjuntos de Dados como Assunto , HumanosRESUMO
This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants' schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting.