Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 83(4): 779-793, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29534309

RESUMO

OBJECTIVE: Friedreich's ataxia is an incurable inherited neurological disease caused by frataxin deficiency. Here, we report the neuroreparative effects of myeloablative allogeneic bone marrow transplantation in a humanized murine model of the disease. METHODS: Mice received a transplant of fluorescently tagged sex-mismatched bone marrow cells expressing wild-type frataxin and were assessed at monthly intervals using a range of behavioral motor performance tests. At 6 months post-transplant, mice were euthanized for protein and histological analysis. In an attempt to augment numbers of bone marrow-derived cells integrating within the nervous system and improve therapeutic efficacy, a subgroup of transplanted mice also received monthly subcutaneous infusions of the cytokines granulocyte-colony stimulating factor and stem cell factor. RESULTS: Transplantation caused improvements in several indicators of motor coordination and locomotor activity. Elevations in frataxin levels and antioxidant defenses were detected. Abrogation of disease pathology throughout the nervous system was apparent, together with extensive integration of bone marrow-derived cells in areas of nervous tissue injury that contributed genetic material to mature neurons, satellite-like cells, and myelinating Schwann cells by processes including cell fusion. Elevations in circulating bone marrow-derived cell numbers were detected after cytokine administration and were associated with increased frequencies of Purkinje cell fusion and bone marrow-derived dorsal root ganglion satellite-like cells. Further improvements in motor coordination and activity were evident. INTERPRETATION: Our data provide proof of concept of gene replacement therapy, via allogeneic bone marrow transplantation, that reverses neurological features of Friedreich's ataxia with the potential for rapid clinical translation. Ann Neurol 2018;83:779-793.


Assuntos
Transplante de Medula Óssea/métodos , Ataxia de Friedreich/cirurgia , Animais , Peso Corporal/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Ataxia de Friedreich/genética , Gânglios Espinais/patologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Ligação ao Ferro/genética , Leucócitos Mononucleares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular/fisiologia , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Frataxina
2.
Ann Neurol ; 81(2): 212-226, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28009062

RESUMO

OBJECTIVES: Friedreich's ataxia is a devastating neurological disease currently lacking any proven treatment. We studied the neuroprotective effects of the cytokines, granulocyte-colony stimulating factor (G-CSF) and stem cell factor (SCF) in a humanized murine model of Friedreich's ataxia. METHODS: Mice received monthly subcutaneous infusions of cytokines while also being assessed at monthly time points using an extensive range of behavioral motor performance tests. After 6 months of treatment, neurophysiological evaluation of both sensory and motor nerve conduction was performed. Subsequently, mice were sacrificed for messenger RNA, protein, and histological analysis of the dorsal root ganglia, spinal cord, and cerebellum. RESULTS: Cytokine administration resulted in significant reversal of biochemical, neuropathological, neurophysiological, and behavioural deficits associated with Friedreich's ataxia. Both G-CSF and SCF had pronounced effects on frataxin levels (the primary molecular defect in the pathogenesis of the disease) and a regulators of frataxin expression. Sustained improvements in motor coordination and locomotor activity were observed, even after onset of neurological symptoms. Treatment also restored the duration of sensory nerve compound potentials. Improvements in peripheral nerve conduction positively correlated with cytokine-induced increases in frataxin expression, providing a link between increases in frataxin and neurophysiological function. Abrogation of disease-related pathology was also evident, with reductions in inflammation/gliosis and increased neural stem cell numbers in areas of tissue injury. INTERPRETATION: These experiments show that cytokines already clinically used in other conditions offer the prospect of a novel, rapidly translatable, disease-modifying, and neuroprotective treatment for Friedreich's ataxia. Ann Neurol 2017;81:212-226.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ataxia de Friedreich/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos/farmacologia , Proteínas de Ligação ao Ferro/metabolismo , Condução Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nervos Periféricos/efeitos dos fármacos , Fator de Células-Tronco/farmacologia , Animais , Modelos Animais de Doenças , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/fisiopatologia , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fármacos Neuroprotetores/administração & dosagem , Fator de Células-Tronco/administração & dosagem , Frataxina
3.
Eur J Immunol ; 45(4): 1103-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25627813

RESUMO

The serine/threonine kinase glycogen synthase kinase-3 (GSK3) plays an important role in balancing pro- and anti-inflammatory cytokines. We have examined the role of GSK3 in production of IL-10 by subsets of CD4(+) T helper cells. Treatment of naive murine CD4(+) T cells with GSK3 inhibitors did not affect their production of IL-10. However, treatment of Th1 and Th2 cells with GSK3 inhibitors dramatically increased production of IL-10. GSK3 inhibition also led to upregulation of IL-10 among Th1, Th2, and Th17 subsets isolated from human blood. The encephalitogenic potential of GSK3 inhibitor treated murine Th1 cells was significantly reduced in adoptive transfer experiments by an IL-10-dependent mechanism. Analysis of the murine IL-10 promoter in response to inhibition of GSK3 in Th1 cells showed modification to a transcriptionally active state indicated by changes in histone H3 acetylation and methylation. Additionally, GSK3 inhibition increased expression of the transcription factors c-Maf, Nfil3, and GATA3, correlating with the increase in IL-10. These findings are important in the context of autoimmune disease since they show that it is possible to reprogram disease-causing cells through GSK3 inhibition.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Interleucina-10/biossíntese , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Acetilação , Transferência Adotiva , Animais , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Células Cultivadas , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fator de Transcrição GATA3/biossíntese , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Histonas/metabolismo , Humanos , Inflamação/imunologia , Interleucina-10/genética , Metilação , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-maf/biossíntese , Células Th1/transplante
4.
FEBS Open Bio ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095329

RESUMO

To date, most efforts to decolonise curricula have focussed on the arts and humanities, with many believing that science subjects are objective, unbiased, and unaffected by colonial legacies. However, science is shaped by both contemporary and historical culture. Science has been used to support imperialism, to extract and exploit knowledge and natural resources, and to justify racist and ableist ideologies. Colonial legacies continue to affect scientific knowledge generation and shape contemporary research priorities. In the biomedical sciences, research biases can feed into wider health inequalities. Reflection of these biases in our taught curricula risks perpetuating long-standing inequities to future generations of scientists. We examined attitudes and understanding towards decolonising and diversifying the curriculum among students and teaching staff in the biomedical sciences at the University of Bristol, UK, to discover whether our current teaching practice is perceived as inclusive. We used a mixed methods study including surveys of staff (N = 71) and students (N = 121) and focus groups. Quantitative data showed that staff and students think decolonising the curriculum is important, but this is more important to female respondents (P < 0.001). Students are less aware than staff of current efforts to decolonise the curriculum, while students from minority ethnic groups feel less represented by the curriculum than white students. Thematic analysis of qualitative data revealed three themes that are important for a decolonised curriculum in our context: rediscovery, representation and readiness. We propose that this '3Rs framework' could guide future efforts to decolonise and diversify the curriculum in the biomedical sciences and beyond.

5.
Front Immunol ; 12: 654201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936079

RESUMO

Immunotherapy with antigen-processing independent T cell epitopes (apitopes) targeting autoreactive CD4+ T cells has translated to the clinic and been shown to modulate progression of both Graves' disease and multiple sclerosis. The model apitope (Ac1-9[4Y]) renders antigen-specific T cells anergic while repeated administration induces both Tr1 and Foxp3+ regulatory cells. Here we address why CD4+ T cell epitopes should be designed as apitopes to induce tolerance and define the antigen presenting cells that they target in vivo. Furthermore, we reveal the impact of treatment with apitopes on CD4+ T cell signaling, the generation of IL-10-secreting regulatory cells and the systemic migration of these cells. Taken together these findings reveal how apitopes induce tolerance and thereby mediate antigen-specific immunotherapy of autoimmune diseases.


Assuntos
Apresentação de Antígeno/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Autoimunidade , Epitopos de Linfócito T/imunologia , Imunoterapia/métodos , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Tolerância Imunológica , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Peptídeos/química , Peptídeos/imunologia
6.
Elife ; 72018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29709214

RESUMO

Vaccines induce memory B-cells that provide high affinity secondary antibody responses to identical antigens. Memory B-cells can also re-instigate affinity maturation, but how this happens against antigenic variants is poorly understood despite its potential impact on driving broadly protective immunity against pathogens such as Influenza and Dengue. We immunised mice sequentially with identical or variant Dengue-virus envelope proteins and analysed antibody and germinal-centre (GC) responses. Variant protein boosts induced GCs with a higher proportion of IgM+ B cells. The most variant protein re-stimulated GCs with the highest proportion of IgM+ cells with the most diverse, least mutated V-genes and with a slower but efficient serum antibody response. Recombinant antibodies from GC B-cells showed a higher affinity for the variant antigen than antibodies from a primary response, confirming a memory origin. This reveals a new process of antibody memory, that IgM memory cells with fewer mutations participate in secondary responses to variant antigens, demonstrating how the hierarchical structure of B-cell memory is used and indicating the potential and limits of cross-reactive antibody based immunity.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunoglobulina M/imunologia , Memória Imunológica , Animais , Reações Cruzadas , Dengue/imunologia , Dengue/patologia , Dengue/virologia , Vírus da Dengue/imunologia , Feminino , Imunoglobulina M/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mutantes/imunologia , Proteínas do Envelope Viral/imunologia
7.
PLoS One ; 12(2): e0171547, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158245

RESUMO

Secretion of interleukin-10 (IL-10) by CD4+ T cells is an essential immunoregulatory mechanism. The work presented here assesses the role of the signaling molecule protein kinase C theta (PKCθ) in the induction of IL-10 expression in CD4+ T cells. Using wildtype and PKCθ-deficient Tg4 T cell receptor transgenic mice, we implemented a well-described protocol of repeated doses of myelin basic protein (MBP)Ac1-9[4Y] antigen to induce Tr1-like IL-10+ T cells. We find that PKCθ is required for the efficient induction of IL-10 following antigen administration. Both serum concentrations of IL-10 and the proportion of IL-10+ T cells were reduced in PKCθ-deficient mice relative to wildtype mice following [4Y] treatment. We further characterized the T cells of [4Y] treated PKCθ-deficient Tg4 mice and found reduced expression of the transcription factors cMaf, Nfil3 and FoxP3 and the surface receptors PD-1 and Tim3, all of which have been associated with the differentiation or function of IL-10+ T cells. Finally, we demonstrated that, unlike [4Y] treated wildtype Tg4 T cells, cells from PKCθ-deficient mice were unable to suppress the priming of naïve T cells in vitro and in vivo. In summary, we present data demonstrating a role for PKCθ in the induction of suppressive, IL-10-secreting T cells induced in TCR-transgenic mice following chronic antigen administration. This should be considered when contemplating PKCθ as a suitable drug target for inducing immune suppression and graft tolerance.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Interleucina-10/metabolismo , Isoenzimas/fisiologia , Proteína Quinase C/fisiologia , Animais , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Feminino , Tolerância Imunológica , Interleucina-10/sangue , Ativação Linfocitária , Masculino , Camundongos , Camundongos Transgênicos , Proteína Básica da Mielina/imunologia , Proteína Quinase C-theta , Transdução de Sinais
8.
Sci Rep ; 7(1): 11315, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900244

RESUMO

IL-10 is an immunomodulatory cytokine with a critical role in limiting inflammation in immune-mediated pathologies. The mechanisms leading to IL-10 expression by CD4+ T cells are being elucidated, with several cytokines implicated. We explored the effect of IL-4 on the natural phenomenon of IL-10 production by a chronically stimulated antigen-specific population of differentiated Th1 cells. In vitro, IL-4 blockade inhibited while addition of exogenous IL-4 to Th1 cultures enhanced IL-10 production. In the in vivo setting of peptide immunotherapy leading to a chronically stimulated Th1 phenotype, lack of IL-4Rα inhibited the induction of IL-10. Exploring the interplay of Th1 and Th2 cells through co-culture, Th2-derived IL-4 promoted IL-10 expression by Th1 cultures, reducing their pathogenicity in vivo. Co-culture led to upregulated c-Maf expression with no decrease in the proportion of T-bet+ cells in these cultures. Addition of IL-4 also reduced the encephalitogenic capacity of Th1 cultures. These data demonstrate that IL-4 contributes to IL-10 production and that Th2 cells modulate Th1 cultures towards a self-regulatory phenotype, contributing to the cross-regulation of Th1 and Th2 cells. These findings are important in the context of Th1 driven diseases since they reveal how the Th1 phenotype and function can be modulated by IL-4.


Assuntos
Interleucina-10/metabolismo , Interleucina-4/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Imunofenotipagem , Ativação Linfocitária , Camundongos , Camundongos Knockout , Fenótipo , Receptores de Superfície Celular/genética , Fator de Transcrição STAT6/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
9.
Elife ; 62017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28112644

RESUMO

Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteína Quinase C-theta/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Antígenos CD28/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
10.
Nat Commun ; 5: 4741, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25182274

RESUMO

Antigen-specific immunotherapy combats autoimmunity or allergy by reinstating immunological tolerance to target antigens without compromising immune function. Optimization of dosing strategy is critical for effective modulation of pathogenic CD4(+) T-cell activity. Here we report that dose escalation is imperative for safe, subcutaneous delivery of the high self-antigen doses required for effective tolerance induction and elicits anergic, interleukin (IL)-10-secreting regulatory CD4(+) T cells. Analysis of the CD4(+) T-cell transcriptome, at consecutive stages of escalating dose immunotherapy, reveals progressive suppression of transcripts positively regulating inflammatory effector function and repression of cell cycle pathways. We identify transcription factors, c-Maf and NFIL3, and negative co-stimulatory molecules, LAG-3, TIGIT, PD-1 and TIM-3, which characterize this regulatory CD4(+) T-cell population and whose expression correlates with the immunoregulatory cytokine IL-10. These results provide a rationale for dose escalation in T-cell-directed immunotherapy and reveal novel immunological and transcriptional signatures as surrogate markers of successful immunotherapy.


Assuntos
Autoantígenos/administração & dosagem , Linfócitos T CD4-Positivos/efeitos dos fármacos , Dessensibilização Imunológica/métodos , Encefalomielite Autoimune Experimental/terapia , Peptídeos/administração & dosagem , Transcriptoma/efeitos dos fármacos , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Autoantígenos/química , Autoantígenos/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Anergia Clonal/efeitos dos fármacos , Misturas Complexas/administração & dosagem , Misturas Complexas/imunologia , Relação Dose-Resposta Imunológica , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/imunologia , Regulação da Expressão Gênica , Receptor Celular 2 do Vírus da Hepatite A , Injeções Subcutâneas , Interleucina-10/genética , Interleucina-10/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Peptídeos/química , Peptídeos/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-maf/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Virais/genética , Receptores Virais/imunologia , Medula Espinal/química , Transcriptoma/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
11.
PLoS One ; 8(4): e61334, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593464

RESUMO

T regulatory (Treg) cells expressing the transcription factor FoxP3 play a key role in protection against autoimmune disease. GFP-FoxP3 reporter mice have been used widely to study the induction, function and stability of both thymically- and peripherally-induced Treg cells. The N-terminal modification of FoxP3, however, affects its interaction with transcriptional co-factors; this can alter Treg cell development and function in certain self-antigen specific animal models. Interestingly, Treg cell function can be negatively or positively affected, depending on the nature of the model. In this study, we focused on the effect of the GFP-FoxP3 reporter on Treg cell development and function in the Tg4 mouse model. In this model, T cells express a transgenic T cell receptor (TCR) specific for the Myelin Basic Protein (MBP) peptide Ac1-9, making the animals susceptible to experimental autoimmune encephalomyelitis (EAE), a disease akin to multiple sclerosis in humans. Unlike diabetes-susceptible mice, Tg4 FoxP3(gfp) mice did not develop spontaneous autoimmune disease and did not demonstrate augmented susceptibility to induced disease. Concurrently, thymic generation of natural Treg cells was not negatively affected. The induction of FoxP3 expression in naive peripheral T cells was, however, significantly impaired as a result of the transgene. This study shows that the requirements for the interaction of FoxP3 with co-factors, which governs its regulatory ability, differ not only between natural and inducible Treg cells but also between animal models of diseases such as diabetes and EAE.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Antígenos/metabolismo , Contagem de Células , Diferenciação Celular , Feminino , Regulação da Expressão Gênica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/citologia
12.
Front Immunol ; 4: 129, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23755052

RESUMO

Since the discovery of interleukin-10 (IL-10) in the 1980s, a large body of work has led to its recognition as a pleiotropic immunomodulatory cytokine that affects both the innate and adaptive immune systems. IL-10 is produced by a wide range of cell types, but for the purposes of this review we shall focus on IL-10 secreted by CD4(+) T cells. Here we describe the importance of IL-10 as a mediator of suppression used by both FoxP3(+) and FoxP3(-) T regulatory cells. Moreover, we discuss the molecular events leading to the induction of IL-10 secretion in T helper cell subsets, where it acts as a pivotal negative feedback mechanism. Finally we discuss how a greater understanding of this principle has allowed for the design of more efficient, antigen-specific immunotherapy strategies to exploit this natural phenomenon clinically.

13.
Invest Ophthalmol Vis Sci ; 49(9): 4008-17, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18469197

RESUMO

PURPOSE: To investigate the efficacy of the B subunit of Escherichia coli heat-labile enterotoxin (EtxB) in the treatment of ocular autoimmune disease. Murine experimental autoimmune uveoretinitis (EAU) is an animal model of autoimmune posterior uveitis initiated by retinal antigen-specific Th1 and Th17 CD4(+) T cells, which activate myeloid cells, inducing retinal damage. EtxB is a potent immune modulator that ameliorates other Th1-mediated autoimmune diseases, enhancing regulatory T-cell activity. METHODS: EAU was induced in B10.RIII mice by immunization with peptide hIRBP(161-180). Disease severity was measured by clinical and histologic assessment, and functional responses of macrophages (Mphis) and T cells were assessed, both in vivo and in cocultures in vitro. EtxB was administered intranasally daily for 4 days, starting either 3 days before or 3 days after EAU induction. RESULTS: Preimmunization treatment with EtxB protected mice from EAU, limiting both the number and the activation status of retinal infiltrating immune cells. Treatment after EAU induction did not alter the disease course, despite suppression of IFN-gamma. Although EtxB treatment of in vitro cocultures of T cells and Mphis increased IL-10 production, EtxB treatment in vivo increased the proportion and number of IL-17-producing CD4(+) cells infiltrating the eye. CONCLUSIONS: EtxB preimmunization protects mice from EAU induction by inhibiting Th1 responses, but the resultant reduction in IFN-gamma responses by EtxB does not effect infiltration or structural damage in established EAU, where Th17 responses predominate. These data highlight the critical importance of the dynamics of T-cell phenotype and infiltration during EAU when considering immunomodulatory therapy.


Assuntos
Doenças Autoimunes/imunologia , Toxinas Bacterianas/imunologia , Enterotoxinas/imunologia , Proteínas de Escherichia coli/imunologia , Ovalbumina/farmacologia , Fragmentos de Peptídeos/farmacologia , Retinite/imunologia , Proteínas de Ligação ao Retinol/farmacologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Uveíte/imunologia , Sequência de Aminoácidos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Divisão Celular , Modelos Animais de Doenças , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/química , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa