RESUMO
There are no theorems (proven theories) in the biological sciences. We propose that the 3 31 nt minihelix tRNA evolution theorem be universally accepted as one. The 3 31 nt minihelix theorem completely describes the evolution of type I and type II tRNAs from ordered precursors (RNA repeats and inverted repeats). Despite the diversification of tRNAome sequences, statistical tests overwhelmingly support the theorem. Furthermore, the theorem relates the dominant pathway for the origin of life on Earth, specifically, how tRNAomes and the genetic code may have coevolved. Alternate models for tRNA evolution (i.e., 2 minihelix, convergent and accretion models) are falsified. In the context of the pre-life world, tRNA was a molecule that, via mutation, could modify anticodon sequences and teach itself to code. Based on the tRNA sequence, we relate the clearest history to date of the chemical evolution of life. From analysis of tRNA evolution, ribozyme-mediated RNA ligation was a primary driving force in the evolution of complexity during the pre-life-to-life transition. TRNA formed the core for the evolution of living systems on Earth.
RESUMO
The genetic code evolved around the reading of the tRNA anticodon on the primitive ribosome, and tRNA-34 wobble and tRNA-37 modifications coevolved with the code. We posit that EF-Tu, the closing mechanism of the 30S ribosomal subunit, methylation of wobble U34 at the 5-carbon and suppression of wobbling at the tRNA-36 position were partly redundant and overlapping functions that coevolved to establish the code. The genetic code devolved in evolution of mitochondria to reduce the size of the tRNAome (all of the tRNAs of an organism or organelle). "Superwobbling" or four-way wobbling describes a major mechanism for shrinking the mitochondrial tRNAome. In superwobbling, unmodified wobble tRNA-U34 can recognize all four codon wobble bases (A, G, C and U), allowing a single unmodified tRNA-U34 to read a 4-codon box. During code evolution, to suppress superwobbling in 2-codon sectors, U34 modification by methylation at the 5-carbon position appears essential. As expected, at the base of code evolution, tRNA-37 modifications mostly related to the identity of the adjacent tRNA-36 base. TRNA-37 modifications help maintain the translation frame during elongation.
RESUMO
Diverse models have been advanced for the evolution of the genetic code. Here, models for tRNA, aminoacyl-tRNA synthetase (aaRS) and genetic code evolution were combined with an understanding of EF-Tu suppression of tRNA 3rd anticodon position wobbling. The result is a highly detailed scheme that describes the placements of all amino acids in the standard genetic code. The model describes evolution of 6-, 4-, 3-, 2- and 1-codon sectors. Innovation in column 3 of the code is explained. Wobbling and code degeneracy are explained. Separate distribution of serine sectors between columns 2 and 4 of the code is described. We conclude that very little chaos contributed to evolution of the genetic code and that the pattern of evolution of aaRS enzymes describes a history of the evolution of the code. A model is proposed to describe the biological selection for the earliest evolution of the code and for protocell evolution.