RESUMO
In this study, the new Hardion+ micro-implanter technology was used to modify surface properties of biomedical pure titanium (CP-Ti) and Ti-6Al-4V ELI alloy by implantation of nitrogen ions. This process is based on the use of an electron cyclotron resonance ion source to produce a multienergetic ion beam from multicharged ions. After implantation, surface analysis methods revealed the formation of titanium nitride (TiN) on the substrate surfaces. An increase in superficial hardness and a significant reduction of friction coefficient were observed for both materials when compared to non-implanted samples. Better corrosion resistance and a significant decrease in ion release rates were observed for N-implanted biomaterials due to the formation of the protective TiN layer on their surfaces. In vitro tests performed on human fetal osteoblasts indicated that the cytocompatibility of N-implanted CP-Ti and Ti-6Al-4V alloy was enhanced in comparison to that of the corresponding non treated samples. Consequently, Hardion+ implantation technique can provide titanium alloys with better qualities in terms of corrosion resistance, cell proliferation, adhesion and viability.
Assuntos
Ligas/química , Nitrogênio/química , Titânio/química , Materiais Biocompatíveis/química , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Corrosão , Matriz Extracelular/metabolismo , Fibronectinas/química , Humanos , Íons , Espectrometria de Massas/métodos , Teste de Materiais , Nitrogênio/metabolismo , Osteoblastos/citologia , Próteses e Implantes , Propriedades de Superfície , TemperaturaRESUMO
In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility.