Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 13: 211, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23621985

RESUMO

BACKGROUND: New pharmacologic targets are urgently needed to treat or prevent lung cancer, the most common cause of cancer death for men and women. This study identified one such target. This is the canonical Wnt signaling pathway, which is deregulated in cancers, including those lacking adenomatous polyposis coli or ß-catenin mutations. Two poly-ADP-ribose polymerase (PARP) enzymes regulate canonical Wnt activity: tankyrase (TNKS) 1 and TNKS2. These enzymes poly-ADP-ribosylate (PARsylate) and destabilize axin, a key component of the ß-catenin phosphorylation complex. METHODS: This study used comprehensive gene profiles to uncover deregulation of the Wnt pathway in murine transgenic and human lung cancers, relative to normal lung. Antineoplastic consequences of genetic and pharmacologic targeting of TNKS in murine and human lung cancer cell lines were explored, and validated in vivo in mice by implantation of murine transgenic lung cancer cells engineered with reduced TNKS expression relative to controls. RESULTS: Microarray analyses comparing Wnt pathway members in malignant versus normal tissues of a murine transgenic cyclin E lung cancer model revealed deregulation of Wnt pathway components, including TNKS1 and TNKS2. Real-time PCR assays independently confirmed these results in paired normal-malignant murine and human lung tissues. Individual treatments of a panel of human and murine lung cancer cell lines with the TNKS inhibitors XAV939 and IWR-1 dose-dependently repressed cell growth and increased cellular axin 1 and tankyrase levels. These inhibitors also repressed expression of a Wnt-responsive luciferase construct, implicating the Wnt pathway in conferring these antineoplastic effects. Individual or combined knockdown of TNKS1 and TNKS2 with siRNAs or shRNAs reduced lung cancer cell growth, stabilized axin, and repressed tumor formation in murine xenograft and syngeneic lung cancer models. CONCLUSIONS: Findings reported here uncovered deregulation of specific components of the Wnt pathway in both human and murine lung cancer models. Repressing TNKS activity through either genetic or pharmacological approaches antagonized canonical Wnt signaling, reduced murine and human lung cancer cell line growth, and decreased tumor formation in mouse models. Taken together, these findings implicate the use of TNKS inhibitors to target the Wnt pathway to combat lung cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Tanquirases/genética , Via de Sinalização Wnt/genética , Análise de Variância , Animais , Proteína Axina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Imidas/farmacologia , Imidas/uso terapêutico , Pulmão/enzimologia , Neoplasias Pulmonares/enzimologia , Camundongos , Análise em Microsséries , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Tanquirases/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
2.
BMC Cancer ; 9: 383, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19874621

RESUMO

BACKGROUND: Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency. METHODS: Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-trans retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes. RESULTS: Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833K cells. CONCLUSION: During induced differentiation of human EC cells, the Wnt signalling pathway is reprogrammed and canonical Wnt signalling induced. Specific species regulating non-canonical Wnt signalling conferred growth inhibition when targeted for repression in these EC cells. Notably, FZD7 repression significantly inhibited growth of human EC cells and is a promising therapeutic target for TGCTs.


Assuntos
Carcinoma Embrionário/metabolismo , Diferenciação Celular , Transdução de Sinais , Proteínas Wnt/metabolismo , Carcinoma Embrionário/tratamento farmacológico , Carcinoma Embrionário/genética , Carcinoma Embrionário/fisiopatologia , Linhagem Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/genética
3.
J Am Soc Mass Spectrom ; 19(6): 790-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18499037

RESUMO

Electron detachment dissociation (EDD) Fourier transform mass spectrometry has recently been shown to be a useful method for tandem mass spectrometry analysis of sulfated glycosaminoglycans (GAGs). EDD produces abundant glycosidic and cross-ring fragmentations that are useful for localizing sites of sulfation in GAG oligosaccharides. Although EDD fragmentation can be used to characterize GAGs in a single tandem mass spectrometry experiment, SO3 loss accompanies many peaks and complicates the resulting mass spectra. In this work we demonstrate the ability to significantly decrease SO3 loss by selection of the proper ionized state of GAG precursor ions. When the degree of ionization is greater than the number of sulfate groups in an oligosaccharide, a significant reduction in SO3 loss is observed in the EDD mass spectra. These data suggested that SO3 loss is reduced when an electron is detached from carboxylate groups instead of sulfate. Electron detachment occurs preferentially from carboxylate versus sulfate for thermodynamic reasons, provided that carboxylate is in its ionized state. Ionization of the carboxylate group is achieved by selecting the appropriate precursor ion charge state, or by the replacement of protons with sodium cations. Increasing the ionization state by sodium cation addition decreases, but does not eliminate, SO3 loss from infrared multiphoton dissociation of the same GAG precursor ions.


Assuntos
Glicosaminoglicanos/química , Modelos Químicos , Modelos Moleculares , Oligossacarídeos/química , Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cátions , Simulação por Computador , Fótons , Eletricidade Estática
4.
J Am Soc Mass Spectrom ; 19(2): 294-304, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18055211

RESUMO

The structural characterization of glycosaminoglycans (GAG) oligosaccharides has been a long-standing challenge in the field of mass spectrometry. In this work, we present the application of electron detachment dissociation (EDD) Fourier transform mass spectrometry to the analysis of dermatan sulfate (DS) oligosaccharides up to 10 residues long. The EDD mass spectra of DS oligosaccharides were compared with their infrared multiphoton dissociation (IRMPD) mass spectra. EDD produces more abundant fragmentation than IRMPD with far less loss of SO3 from labile sulfate modifications. EDD cleaves all glycosidic bonds, yielding both conventional glycosidic bond fragmentation as well as satellite peaks resulting from the additional loss of 1 or 2 hydrogen atoms. EDD also yields more cross-ring fragmentation than IRMPD. For EDD, abundant cross-ring fragmentation in the form of A- and X-ions is observed, with 1,5Xn cleavages occurring for all IdoA residues and many of the GalNAc4S residues, except at the reducing and nonreducing ends. In contrast, IRMPD produces only A-type cross-ring fragmentation for long oligosaccharides (dp6-dp10). As all the structurally informative fragment ions observed by IRMPD appear as a subset of the peaks found in the EDD mass spectrum, EDD shows great potential for the characterization of GAG oligosaccharides using a single tandem mass spectrometry experiment.


Assuntos
Dermatan Sulfato/análise , Elétrons , Espectrometria de Massas/métodos , Oligossacarídeos/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Dermatan Sulfato/química , Hidrogênio/química , Mucosa Intestinal/química , Oligossacarídeos/química , Isótopos de Oxigênio/química , Suínos
5.
Cancer Biol Ther ; 15(4): 463-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24496080

RESUMO

Male germ cell tumors (GCTs) are a model for a curable solid tumor. GCTs can differentiate into mature teratomas. Embryonal carcinomas (ECs) represent the stem cell compartment of GCTs and are the malignant counterpart to embryonic stem (ES) cells. GCTs and EC cells are useful to investigate differentiation therapy and chemotherapy response. This study explored mechanistic interactions between all-trans-retinoic acid (RA), which induces differentiation of EC and ES cells, and the Hedgehog (Hh) pathway, a regulator of self-renewal and proliferation. RA was found to induce mRNA and protein expression of Patched 1 (Ptch1), the Hh ligand receptor and negative regulator of this pathway. PTCH1 is also a target gene of Hh signaling through Smoothened (Smo) activation. Yet, this observed RA-mediated Ptch1 induction was independent of Smo. It occurred despite co-treatment with RA and Smo inhibitors. Retinoid induction of Ptch1 also occurred in other RA-responsive cancer cell lines and in normal ES cells. Notably, this enhanced Ptch1 expression was preceded by induction of the homeobox transcription factor Meis1, a direct RA target. Direct interaction between Meis1 and Ptch1 was confirmed using chromatin immunoprecipitation assays. To establish the translational relevance of this work, Ptch1 expression was shown to be deregulated in human ECs relative to mature teratoma and the normal seminiferous tubule. Taken together, these findings reveal a previously unrecognized mechanism through which RA can inhibit the Hh pathway via Ptch1 induction. Engaging this pathway is a new way to repress the Hh pathway that can be translated into the cancer clinic.


Assuntos
Proteínas Hedgehog/metabolismo , Receptores de Superfície Celular/biossíntese , Tretinoína/metabolismo , Animais , Carcinoma Embrionário/metabolismo , Carcinoma Embrionário/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Túbulos Seminíferos/metabolismo , Túbulos Seminíferos/patologia , Transdução de Sinais , Receptor Smoothened , Teratoma/metabolismo , Teratoma/patologia , Fatores de Transcrição/genética , Tretinoína/farmacologia , Proteína GLI1 em Dedos de Zinco
6.
Int J Oncol ; 41(5): 1751-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923130

RESUMO

Hedgehog (HH) pathway Smoothened (Smo) inhibitors are active against Gorlin syndrome-associated basal cell carcinoma (BCC) and medulloblastoma where Patched (Ptch) mutations occur. We interrogated 705 epithelial cancer cell lines for growth response to the Smo inhibitor cyclopamine and for expressed HH pathway-regulated species in a linked genetic database. Ptch and Smo mutations that respectively conferred Smo inhibitor response or resistance were undetected. Previous studies revealed HH pathway activation in lung cancers. Therefore, findings were validated using lung cancer cell lines, transgenic and transplantable murine lung cancer models, and human normal-malignant lung tissue arrays in addition to testing other Smo inhibitors. Cyclopamine sensitivity most significantly correlated with high cyclin E (P=0.000009) and low insulin-like growth factor binding protein 6 (IGFBP6) (P=0.000004) levels. Gli family members were associated with response. Cyclopamine resistance occurred with high GILZ (P=0.002) expression. Newer Smo inhibitors exhibited a pattern of sensitivity similar to cyclopamine. Gain of cyclin E or loss of IGFBP6 in lung cancer cells significantly increased Smo inhibitor response. Cyclin E-driven transgenic lung cancers expressed a gene profile implicating HH pathway activation. Cyclopamine treatment significantly reduced proliferation of murine and human lung cancers. Smo inhibition reduced lung cancer formation in a syngeneic mouse model. In human normal-malignant lung tissue arrays cyclin E, IGFBP6, Gli1 and GILZ were each differentially expressed. Together, these findings indicate that Smo inhibitors should be considered in cancers beyond those with activating HH pathway mutations. This includes tumors that express genes indicating basal HH pathway activation.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/genética , Mutação , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética , Alcaloides de Veratrum/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina E/genética , Ciclina E/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog , Humanos , Camundongos , Receptores Patched , Receptor Patched-1 , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened
7.
Cancer Prev Res (Phila) ; 4(6): 818-28, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21636548

RESUMO

The rexinoid bexarotene represses cyclin D1 by causing its proteasomal degradation. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib represses cyclin D1 via different mechanisms. We conducted a preclinical study and 2 clinical/translational trials (a window-of-opportunity and phase II) of bexarotene plus erlotinib. The combination repressed growth and cyclin D1 expression in cyclin-E- and KRAS/p53-driven transgenic lung cancer cells. The window-of-opportunity trial in early-stage non-small-cell lung cancer (NSCLC) patients (10 evaluable), including cases with KRAS mutations, repressed cyclin D1 (in tumor biopsies and buccal swabs) and induced necrosis and inflammatory responses. The phase II trial in heavily pretreated, advanced NSCLC patients (40 evaluable; a median of two prior relapses per patient (range, 0-5); 21% with prior EGFR-inhibitor therapy) produced three major clinical responses in patients with prolonged progression-free survival (583-, 665-, and 1,460-plus days). Median overall survival was 22 weeks. Hypertriglyceridemia was associated with an increased median overall survival (P = 0.001). Early PET (positron emission tomographic) response did not reliably predict clinical response. The combination was generally well tolerated, with toxicities similar to those of the single agents. In conclusion, bexarotene plus erlotinib was active in KRAS-driven lung cancer cells, was biologically active in early-stage mutant KRAS NSCLC, and was clinically active in advanced, chemotherapy-refractory mutant KRAS tumors in this study and previous trials. Additional lung cancer therapy or prevention trials with this oral regimen are warranted.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/prevenção & controle , Ciclina D1/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Idoso , Animais , Bexaroteno , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Cloridrato de Erlotinib , Feminino , Humanos , Immunoblotting , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mucosa Bucal/citologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Necrose , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Proteínas Proto-Oncogênicas p21(ras) , Quinazolinas/administração & dosagem , Terapia de Salvação , Taxa de Sobrevida , Tetra-Hidronaftalenos/administração & dosagem , Resultado do Tratamento , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa