Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nucleic Acids Res ; 52(3): 1258-1271, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38048302

RESUMO

Progression through the mitotic and meiotic cell cycle is driven by fluctuations in the levels of cyclins, the regulatory subunits controlling the localization and activity of CDK1 kinases. Cyclin levels are regulated through a precise balance of synthesis and degradation. Here we demonstrate that the synthesis of Cyclin B1 during the oocyte meiotic cell cycle is defined by the selective translation of mRNA variants generated through alternative cleavage and polyadenylation (APA). Using gene editing in mice, we introduced mutations into the proximal and distal polyadenylation elements of the 3' untranslated region (UTR) of the Ccnb1 mRNA. Through in vivo loss-of-function experiments, we demonstrate that the translation of mRNA with a short 3' UTR specifies Cyclin B1 protein levels that set the timing of meiotic re-entry. In contrast, translation directed by a long 3' UTR is necessary to direct Cyclin B1 protein accumulation during the MI/MII transition. These findings establish that the progression through the cell cycle is dependent on the selective translation of multiple mRNA variants generated by APA.


Assuntos
Ciclina B1 , Meiose , Poliadenilação , Animais , Camundongos , Regiões 3' não Traduzidas/genética , Ciclo Celular/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35593401

RESUMO

Tissue fusion frequently requires the removal of an epithelium that intervenes distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion support their importance in MES removal. However, genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES results in complete loss of cell death and cell extrusion, but successful removal of the MES. Novel static- and live-imaging approaches reveal that the MES is removed through streaming migration of epithelial trails and islands to reach the oral and nasal epithelial surfaces. Epithelial trail cells that express the basal epithelial marker ΔNp63 begin to express periderm markers, suggesting that migration is concomitant with differentiation. Live imaging reveals anisotropic actomyosin contractility within epithelial trails, and genetic ablation of actomyosin contractility results in dispersion of epithelial collectives and failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis, and reveal a crucial and unique form of collective epithelial migration during tissue fusion.


Assuntos
Fissura Palatina , Palato , Actomiosina/metabolismo , Animais , Apoptose , Células Epiteliais/metabolismo , Epitélio/metabolismo , Mamíferos , Palato/metabolismo
3.
PLoS Genet ; 16(2): e1008300, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092051

RESUMO

Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder characterized by craniofacial, skeletal, and neurological anomalies and is caused by mutations in EFNB1. Heterozygous females are more severely affected by CFNS than hemizygous males, a phenomenon called cellular interference that results from EPHRIN-B1 mosaicism. In Efnb1 heterozygous mice, mosaicism for EPHRIN-B1 results in cell sorting and more severe phenotypes than Efnb1 hemizygous males, but how craniofacial dysmorphology arises from cell segregation is unknown and CFNS etiology therefore remains poorly understood. Here, we couple geometric morphometric techniques with temporal and spatial interrogation of embryonic cell segregation in mouse mutant models to elucidate mechanisms underlying CFNS pathogenesis. By generating EPHRIN-B1 mosaicism at different developmental timepoints and in specific cell populations, we find that EPHRIN-B1 regulates cell segregation independently in early neural development and later in craniofacial development, correlating with the emergence of quantitative differences in face shape. Whereas specific craniofacial shape changes are qualitatively similar in Efnb1 heterozygous and hemizygous mutant embryos, heterozygous embryos are quantitatively more severely affected, indicating that Efnb1 mosaicism exacerbates loss of function phenotypes rather than having a neomorphic effect. Notably, neural tissue-specific disruption of Efnb1 does not appear to contribute to CFNS craniofacial dysmorphology, but its disruption within neural crest cell-derived mesenchyme results in phenotypes very similar to widespread loss. EPHRIN-B1 can bind and signal with EPHB1, EPHB2, and EPHB3 receptor tyrosine kinases, but the signaling partner(s) relevant to CFNS are unknown. Geometric morphometric analysis of an allelic series of Ephb1; Ephb2; Ephb3 mutant embryos indicates that EPHB2 and EPHB3 are key receptors mediating Efnb1 hemizygous-like phenotypes, but the complete loss of EPHB1-3 does not fully recapitulate the severity of CFNS-like Efnb1 heterozygosity. Finally, by generating Efnb1+/Δ; Ephb1; Ephb2; Ephb3 quadruple knockout mice, we determine how modulating cumulative receptor activity influences cell segregation in craniofacial development and find that while EPHB2 and EPHB3 play an important role in craniofacial cell segregation, EPHB1 is more important for cell segregation in the brain; surprisingly, complete loss of EPHB1-EPHB3 does not completely abrogate cell segregation. Together, these data advance our understanding of the etiology and signaling interactions underlying CFNS dysmorphology.


Assuntos
Movimento Celular/genética , Anormalidades Craniofaciais/genética , Efrina-B1/genética , Crista Neural/embriologia , Crânio/anormalidades , Animais , Anormalidades Craniofaciais/diagnóstico , Modelos Animais de Doenças , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Efrina-B1/metabolismo , Feminino , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Mosaicismo , Mutação , Crista Neural/citologia , Fenótipo , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Índice de Gravidade de Doença , Fatores Sexuais , Crânio/embriologia , Cromossomo X/genética
4.
Dev Dyn ; 251(7): 1138-1155, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35025117

RESUMO

BACKGROUND: Variation in facial shape may arise from the combinatorial or overlapping actions of paralogous genes. Given its many members, and overlapping expression and functions, the EPH receptor family is a compelling candidate source of craniofacial morphological variation. We performed a detailed morphometric analysis of an allelic series of E14.5 Ephb1-3 receptor mutants to determine the effect of each paralogous receptor gene on craniofacial morphology. RESULTS: We found that Ephb1, Ephb2, and Ephb3 genotypes significantly influenced facial shape, but Ephb1 effects were weaker than Ephb2 and Ephb3 effects. Ephb2-/- and Ephb3-/- mutations affected similar aspects of facial morphology, but Ephb3-/- mutants had additional facial shape effects. Craniofacial differences across the allelic series were largely consistent with predicted additive genetic effects. However, we identified a potentially important nonadditive effect where Ephb1 mutants displayed different morphologies depending on the combination of other Ephb paralogs present, where Ephb1+/- , Ephb1-/- , and Ephb1-/- ; Ephb3-/- mutants exhibited a consistent deviation from their predicted facial shapes. CONCLUSIONS: This study provides a detailed assessment of the effects of Ephb receptor gene paralogs on E14.5 mouse facial morphology and demonstrates how the loss of specific receptors contributes to facial dysmorphology.


Assuntos
Efrina-B1 , Desenvolvimento Maxilofacial , Receptor EphB1 , Receptor EphB3 , Receptores da Família Eph , Animais , Efrina-B1/genética , Efrina-B1/metabolismo , Face , Camundongos , Mutação , Receptor EphB1/genética , Receptor EphB2/genética , Receptor EphB3/genética , Receptores da Família Eph/metabolismo
5.
Am J Med Genet A ; 188(12): 3492-3504, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135330

RESUMO

Esophageal atresia/tracheoesophageal fistula (EA/TEF) is a life-threatening birth defect that often occurs with other major birth defects (EA/TEF+). Despite advances in genetic testing, a molecular diagnosis can only be made in a minority of EA/TEF+ cases. Here, we analyzed clinical exome sequencing data and data from the DECIPHER database to determine the efficacy of exome sequencing in cases of EA/TEF+ and to identify phenotypic expansions involving EA/TEF. Among 67 individuals with EA/TEF+ referred for clinical exome sequencing, a definitive or probable diagnosis was made in 11 cases for an efficacy rate of 16% (11/67). This efficacy rate is significantly lower than that reported for other major birth defects, suggesting that polygenic, multifactorial, epigenetic, and/or environmental factors may play a particularly important role in EA/TEF pathogenesis. Our cohort included individuals with pathogenic or likely pathogenic variants that affect TCF4 and its downstream target NRXN1, and FANCA, FANCB, and FANCC, which are associated with Fanconi anemia. These cases, previously published case reports, and comparisons to other EA/TEF genes made using a machine learning algorithm, provide evidence in support of a potential pathogenic role for these genes in the development of EA/TEF.


Assuntos
Atresia Esofágica , Fístula Traqueoesofágica , Humanos , Fístula Traqueoesofágica/diagnóstico , Fístula Traqueoesofágica/genética , Fístula Traqueoesofágica/complicações , Atresia Esofágica/diagnóstico , Atresia Esofágica/genética , Atresia Esofágica/complicações , Exoma/genética , Sequenciamento do Exoma
6.
Dev Biol ; 447(1): 42-57, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360434

RESUMO

In vertebrates, the Eph/ephrin family of signaling molecules is a large group of membrane-bound proteins that signal through a myriad of mechanisms and effectors to play diverse roles in almost every tissue and organ system. Though Eph/ephrin signaling has functions in diverse biological processes, one core developmental function is in the regulation of cell position and tissue morphology by regulating cell migration and guidance, cell segregation, and boundary formation. Often, the role of Eph/ephrin signaling is to translate patterning information into physical movement of cells and changes in morphology that define tissue and organ systems. In this review, we focus on recent advances in the regulation of these processes, and our evolving understanding of the in vivo signaling mechanisms utilized in distinct developmental contexts.


Assuntos
Movimento Celular/fisiologia , Efrinas/metabolismo , Organogênese/fisiologia , Receptores da Família Eph/metabolismo , Transdução de Sinais/fisiologia , Animais , Adesão Celular/fisiologia , Efrinas/genética , Humanos , Receptores da Família Eph/genética
7.
Genesis ; 57(1): e23271, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30548771

RESUMO

Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.


Assuntos
Morfogênese , Crista Neural/embriologia , Crânio/embriologia , Animais , Diferenciação Celular , Humanos
8.
PLoS Biol ; 13(4): e1002122, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25848986

RESUMO

The fusion of two distinct prominences into one continuous structure is common during development and typically requires integration of two epithelia and subsequent removal of that intervening epithelium. Using confocal live imaging, we directly observed the cellular processes underlying tissue fusion, using the secondary palatal shelves as a model. We find that convergence of a multi-layered epithelium into a single-layer epithelium is an essential early step, driven by cell intercalation, and is concurrent to orthogonal cell displacement and epithelial cell extrusion. Functional studies in mice indicate that this process requires an actomyosin contractility pathway involving Rho kinase (ROCK) and myosin light chain kinase (MLCK), culminating in the activation of non-muscle myosin IIA (NMIIA). Together, these data indicate that actomyosin contractility drives cell intercalation and cell extrusion during palate fusion and suggest a general mechanism for tissue fusion in development.


Assuntos
Palato/embriologia , Animais , Camundongos , Morfogênese , Miosinas/fisiologia
9.
Genes Dev ; 24(18): 2068-80, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844017

RESUMO

Mutations in the X-linked human EPHRIN-B1 gene result in cleft palate and other craniofacial anomalies as part of craniofrontonasal syndrome (CFNS), but the molecular and developmental mechanisms by which ephrin-B1 controls the underlying developmental processes are not clear. Here we demonstrate that ephrin-B1 plays an intrinsic role in palatal shelf outgrowth in the mouse by regulating cell proliferation in the anterior palatal shelf mesenchyme. In ephrin-B1 heterozygous mutants, X inactivation generates ephrin-B1-expressing and -nonexpressing cells that sort out, resulting in mosaic ephrin-B1 expression. We now show that this process leads to mosaic disruption of cell proliferation and post-transcriptional up-regulation of EphB receptor expression through relief of endocytosis and degradation. The alteration in proliferation rates resulting from ectopic Eph-ephrin expression boundaries correlates with the more severe dysmorphogenesis of ephrin-B1(+/-) heterozygotes that is a hallmark of CFNS. Finally, by integrating phosphoproteomic and transcriptomic approaches, we show that ephrin-B1 controls proliferation in the palate by regulating the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signal transduction pathway.


Assuntos
Proliferação de Células , Efrina-B1/metabolismo , Palato/embriologia , Transdução de Sinais , Animais , Diferenciação Celular , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Efrina-B1/genética , Efrinas/genética , Efrinas/metabolismo , Camundongos , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Morfogênese , Mutação , Palato/anatomia & histologia , Palato/metabolismo , Receptor EphB3/metabolismo , Síndrome , Regulação para Cima
10.
Genes Dev ; 23(13): 1586-99, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19515977

RESUMO

Mutations in the ephrin-B1 gene result in craniofrontonasal syndrome (CFNS) in humans, a congenital disorder that includes a wide range of craniofacial, skeletal, and neurological malformations. In addition to the ability of ephrin-B1 to forward signal through its cognate EphB tyrosine kinase receptors, ephrin-B1 can also act as a receptor and transduce a reverse signal by either PDZ-dependent or phosphorylation-dependent mechanisms. To investigate how ephrin-B1 acts to influence development and congenital disease, we generated mice harboring a series of targeted point mutations in the ephrin-B1 gene that independently ablate specific reverse signaling pathways, while maintaining forward signaling capacity. We demonstrate that both PDZ and phosphorylation-dependent reverse signaling by ephrin-B1 are dispensable for craniofacial and skeletal development, whereas PDZ-dependent reverse signaling by ephrin-B1 is critical for the formation of a major commissural axon tract, the corpus callosum. Ephrin-B1 is strongly expressed within axons of the corpus callosum, and reverse signaling acts autonomously in cortical axons to mediate an avoidance response to its signaling partner EphB2. These results demonstrate the importance of PDZ-dependent reverse signaling for a subset of Ephrin-B1 developmental roles in vivo.


Assuntos
Osso e Ossos/embriologia , Efrina-B1/genética , Efrina-B1/metabolismo , Domínios PDZ/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Células Cultivadas , Corpo Caloso/embriologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Efrina-B1/química , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Proteína Glial Fibrilar Ácida , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/metabolismo , Receptor EphB2/metabolismo , Crânio/embriologia
11.
Dev Biol ; 406(2): 186-95, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26385750

RESUMO

Ephrin-B2, a member of the Eph/ephrin family of cell signaling molecules, has been implicated in the guidance of cranial and trunk neural crest cells (NCC) and development of the branchial arches(BA), but detailed examination in mice has been hindered by embryonic lethality of Efnb2 null loss of function due to a requirement in angiogenic remodeling. To elucidate the developmental roles for Efnb2, we generated a conditional rescue knock-in allele that allows rescue of ephrin-B2 specifically in the vascular endothelium (VE), but is otherwise ephrin-B2 deficient. Restoration of ephrin-B2 expression specifically to the VE completely circumvents angiogenic phenotypes, indicating that the requirement of ephrin-B2 in angiogenesis is limited to the VE. Surprisingly, we find that expression of ephrin-B2 specifically in the VE is also sufficient for normal NCC migration and that conversely, embryos in which ephrin-B2 is absent specifically from the VE exhibit NCC migration and survival defects. Disruption of vascular development independent of loss of ephrin-B2 function also leads to defects in NCC and BA development. Together, these data indicate that direct ephrin-B2 signaling to NCCs is not required for NCC guidance, which instead depends on proper organization of the embryonic vasculature.


Assuntos
Vasos Sanguíneos/embriologia , Endotélio Vascular/metabolismo , Efrina-B2/genética , Crista Neural/anormalidades , Crista Neural/fisiologia , Fenótipo , Animais , Movimento Celular/fisiologia , Primers do DNA/genética , Imunofluorescência , Regulação da Expressão Gênica , Técnicas Histológicas , Hibridização In Situ , Camundongos , Mutação/genética
12.
13.
Dev Biol ; 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30639158
14.
Development ; 139(2): 231-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22186724

RESUMO

Mammalian palatogenesis is a highly regulated morphogenetic process during which the embryonic primary and secondary palatal shelves develop as outgrowths from the medial nasal and maxillary prominences, respectively, remodel and fuse to form the intact roof of the oral cavity. The complexity of control of palatogenesis is reflected by the common occurrence of cleft palate in humans. Although the embryology of the palate has long been studied, the past decade has brought substantial new knowledge of the genetic control of secondary palate development. Here, we review major advances in the understanding of the morphogenetic and molecular mechanisms controlling palatal shelf growth, elevation, adhesion and fusion, and palatal bone formation.


Assuntos
Fissura Palatina/genética , Mamíferos , Morfogênese/genética , Morfogênese/fisiologia , Palato/embriologia , Animais , Fissura Palatina/fisiopatologia , Modelos Biológicos , Fator de Crescimento Transformador beta/metabolismo
15.
Dev Dyn ; 243(11): 1470-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25073978

RESUMO

BACKGROUND: Eph receptors, comprising the A- and B-subfamilies, are the largest family of receptor tyrosine kinases in the mammalian genome, and their function is critical for morphogenesis in a variety of contexts. Whereas signaling through B-type Ephs has been demonstrated to play a role in cleft lip and palate (CL/P), the involvement of A-type Ephs has not been examined in this context notwithstanding a recent genome-wide association study that identified the EPHA3 locus as a candidate for non-syndromic CL/P. RESULTS: Here, we present a systematic analysis of the gene expression patterns for the nine EphA receptors at progressive stages of mouse development and find that EphA3, EphA4, and EphA7 exhibit restricted overlapping patterns of expression during palate development. We find that homozygous mutation of EphA3 or compound homozygous mutation of EphA3 and EphA4 in mice does not result in defective midfacial development, supporting the possibility of redundant function with EphA7. We also document previously undescribed expression patterns in other tissues of the craniofacial complex including the lacrimal duct and salivary glands. CONCLUSIONS: Together, these results are consistent with the hypothesis that mutations in EPHA family genes may cause CL/P and also suggest that functional redundancy between family members may be at play.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Morfogênese/fisiologia , Palato/embriologia , Receptores da Família Eph/metabolismo , Animais , Perfilação da Expressão Gênica , Técnicas Histológicas , Camundongos , Camundongos Knockout
16.
Semin Cell Dev Biol ; 23(1): 26-34, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040918

RESUMO

The Eph receptor tyrosine kinases and their ephrin partners compose a large and complex family of signaling molecules involved in a wide variety of processes in development, homeostasis, and disease. The complexity inherent to Eph/ephrin signaling derives from several characteristics of the family. First, the large size and functional redundancy/compensation by family members presents a challenge in defining their in vivo roles. Second, the capacity for bidirectional signaling doubles the potential complexity, since every member has the ability to act both as a ligand and a receptor. Third, Ephs and ephrins can utilize a wide array of signal transduction pathways with a tremendous diversity of cell biological effect. The daunting complexity of Eph/ephrin signaling has increasingly prompted investigators to resort to multiple technological approaches to gain mechanistic insight. Here we review recent progress in the use of advanced mouse genetics in combination with proteomic and transcriptomic approaches to gain a more complete understanding of signaling mechanism in vivo. Integrating insights from such disparate approaches provides advantages in continuing to advance our understanding of how this multifarious group of signaling molecules functions in a diverse array of biological contexts.


Assuntos
Efrinas/genética , Receptores da Família Eph/genética , Transdução de Sinais , Transcriptoma , Animais , Efrinas/metabolismo , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteômica , Receptores da Família Eph/metabolismo
17.
Dev Biol ; 379(2): 229-34, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23648512

RESUMO

The Wnt1-Cre transgenic mouse line is extensively used in the study of the development of the neural crest and its derivatives and the midbrain. The Wnt1 gene has important developmental roles in formation of the midbrain-hindbrain boundary, regulation of midbrain size, and neurogenesis of ventral midbrain dopaminergic (mDA) neurons. Here, we report that Wnt1-Cre transgenic mice exhibit phenotypes in multiple aspects of midbrain development. Significant expansion of the midbrain and increased proliferation in the developing inferior colliculus is associated with ectopic expression of Wnt1. Marked elevation of Wnt1 expression in the ventral midbrain is correlated with disruption of the differentiation program of ventral mDA neurons. We find that these phenotypes can be attributed to ectopic expression of Wnt1 from the Wnt1-Cre transgene leading to the ectopic activation of canonical Wnt/ß-catenin signaling. Since these caveats could complicate the utility of Wnt1-Cre in some developmental circumstances, we report a new Wnt1-Cre2 transgenic mouse line that can serve the same purposes as the original without the associated phenotypic complications. These studies reveal an important caveat to a widely-used reagent, provide an improved version of this reagent, and indicate that the original Wnt1-Cre transgenic mouse line may be useful as a gain of function model for interrogating Wnt signaling mechanisms in multiple aspects of midbrain development.


Assuntos
Integrases/metabolismo , Mesencéfalo/embriologia , Neurogênese/fisiologia , Fenótipo , Transdução de Sinais/fisiologia , Proteína Wnt1/metabolismo , Animais , Western Blotting , Bromodesoxiuridina , Primers do DNA/genética , Imunofluorescência , Genótipo , Hibridização In Situ , Integrases/genética , Mesencéfalo/metabolismo , Camundongos , Camundongos Transgênicos , Crista Neural/metabolismo , Crista Neural/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38558995

RESUMO

The histone methyltransferase Polycomb repressive complex 2 (PRC2) is required for specification of the neural crest, and mis-regulation of the neural crest can cause severe congenital malformations. PRC2 is required for induction of the neural crest, but the embryonic, cellular, and molecular consequences of PRC2 activity after neural crest induction are incompletely understood. Here we show that Eed, a core subunit of PRC2, is required for craniofacial osteoblast differentiation and mesenchymal proliferation after induction of the neural crest. Integrating mouse genetics with single-cell RNA sequencing, our results reveal that conditional knockout of Eed after neural crest cell induction causes severe craniofacial hypoplasia, impaired craniofacial osteogenesis, and attenuated craniofacial mesenchymal cell proliferation that is first evident in post-migratory neural crest cell populations. We show that Eed drives mesenchymal differentiation and proliferation in vivo and in primary craniofacial cell cultures by regulating diverse transcription factor programs that are required for specification of post-migratory neural crest cells. These data enhance understanding of epigenetic mechanisms that underlie craniofacial development, and shed light on the embryonic, cellular, and molecular drivers of rare congenital syndromes in humans.

19.
bioRxiv ; 2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37034814

RESUMO

Amelogenesis, the formation of dental enamel, is driven by specialized epithelial cells called ameloblasts, which undergo successive stages of differentiation. Ameloblasts secrete enamel matrix proteins (EMPs), proteases, calcium, and phosphate ions in a stage-specific manner to form mature tooth enamel. Developmental defects in tooth enamel are common in humans, and they can greatly impact the well-being of affected individuals. Our understanding of amelogenesis and developmental pathologies is rooted in past studies using epithelial Cre driver and knockout alleles. However, the available mouse models are limited, as most do not allow targeting different ameloblast sub-populations, and constitutive loss of EMPs often results in severe phenotype in the mineral, making it difficult to interpret defect mechanisms. Herein, we report on the design and verification of a toolkit of twelve mouse alleles that include ameloblast-stage specific Cre recombinases, fluorescent reporter alleles, and conditional flox alleles for the major EMPs. We show how these models may be used for applications such as sorting of live stage specific ameloblasts, whole mount imaging, and experiments with incisor explants. The full list of new alleles is available at https://dev.facebase.org/enamelatlas/mouse-models/ .

20.
Curr Top Dev Biol ; 149: 153-201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35606056

RESUMO

The EPH receptor tyrosine kinases and their signaling partners, the EPHRINS, comprise a large class of cell signaling molecules that plays diverse roles in development. As cell membrane-anchored signaling molecules, they regulate cellular organization by modulating the strength of cellular contacts, usually by impacting the actin cytoskeleton or cell adhesion programs. Through these cellular functions, EPH/EPHRIN signaling often regulates tissue shape. Indeed, recent evidence indicates that this signaling family is ancient and associated with the origin of multicellularity. Though extensively studied, our understanding of the signaling mechanisms employed by this large family of signaling proteins remains patchwork, and a truly "canonical" EPH/EPHRIN signal transduction pathway is not known and may not exist. Instead, several foundational evolutionarily conserved mechanisms are overlaid by a myriad of tissue -specific functions, though common themes emerge from these as well. Here, I review recent advances and the related contexts that have provided new understanding of the conserved and varied molecular and cellular mechanisms employed by EPH/EPHRIN signaling during development.


Assuntos
Efrinas , Receptores da Família Eph , Adesão Celular , Efrinas/metabolismo , Ligação Proteica , Receptores da Família Eph/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa