Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353902

RESUMO

Across all sensory modalities, first-stage sensory neurons are an information bottleneck: they must convey all information available for an animal to perceive and act in its environment. Our understanding of coding properties of primary sensory neurons in the auditory and visual systems has been aided by the use of increasingly complex, naturalistic stimulus sets. By comparison, encoding properties of primary somatosensory afferents are poorly understood. Here, we use the rodent whisker system to examine how tactile information is represented in primary sensory neurons of the trigeminal ganglion (Vg). Vg neurons have long been thought to segregate into functional classes associated with separate streams of information processing. However, this view is based on Vg responses to restricted stimulus sets which potentially underreport the coding capabilities of these neurons. In contrast, the current study records Vg responses to complex three-dimensional (3D) stimulation while quantifying the complete 3D whisker shape and mechanics, thereby beginning to reveal their full representational capabilities. The results show that individual Vg neurons simultaneously represent multiple mechanical features of a stimulus, do not preferentially encode principal components of the stimuli, and represent continuous and tiled variations of all available mechanical information. These results directly contrast with proposed codes in which subpopulations of Vg neurons encode select stimulus features. Instead, individual Vg neurons likely overcome the information bottleneck by encoding large regions of a complex sensory space. This proposed tiled and multidimensional representation at the Vg directly constrains the computations performed by more central neurons of the vibrissotrigeminal pathway.


Assuntos
Células Receptoras Sensoriais/fisiologia , Percepção do Tato/fisiologia , Vibrissas/citologia , Vibrissas/fisiologia , Animais , Feminino , Imageamento Tridimensional , Modelos Lineares , Ratos Long-Evans
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34210794

RESUMO

As it becomes possible to simulate increasingly complex neural networks, it becomes correspondingly important to model the sensory information that animals actively acquire: the biomechanics of sensory acquisition directly determines the sensory input and therefore neural processing. Here, we exploit the tractable mechanics of the well-studied rodent vibrissal ("whisker") system to present a model that can simulate the signals acquired by a full sensor array actively sampling the environment. Rodents actively "whisk" ∼60 vibrissae (whiskers) to obtain tactile information, and this system is therefore ideal to study closed-loop sensorimotor processing. The simulation framework presented here, WHISKiT Physics, incorporates realistic morphology of the rat whisker array to predict the time-varying mechanical signals generated at each whisker base during sensory acquisition. Single-whisker dynamics were optimized based on experimental data and then validated against free tip oscillations and dynamic responses to collisions. The model is then extrapolated to include all whiskers in the array, incorporating each whisker's individual geometry. Simulation examples in laboratory and natural environments demonstrate that WHISKiT Physics can predict input signals during various behaviors, currently impossible in the biological animal. In one exemplary use of the model, the results suggest that active whisking increases in-plane whisker bending compared to passive stimulation and that principal component analysis can reveal the relative contributions of whisker identity and mechanics at each whisker base to the vibrissotactile response. These results highlight how interactions between array morphology and individual whisker geometry and dynamics shape the signals that the brain must process.


Assuntos
Comportamento Animal/fisiologia , Modelos Neurológicos , Tato/fisiologia , Animais , Estimulação Física , Ratos , Transdução de Sinais , Fatores de Tempo , Vibrissas/fisiologia
3.
J Neurosci ; 41(48): 9919-9931, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34697095

RESUMO

Death from opioid overdose is typically caused by opioid-induced respiratory depression (OIRD). A particularly dangerous characteristic of OIRD is its apparent unpredictability. The respiratory consequences of opioids can be surprisingly inconsistent, even within the same individual. Despite significant clinical implications, most studies have focused on average dose-r esponses rather than individual variation, and there remains little insight into the etiology of this apparent unpredictability. The preBötzinger complex (preBötC) in the ventral medulla is an important site for generating the respiratory rhythm and OIRD. Here, using male and female C57-Bl6 mice in vitro, we demonstrate that the preBötC can assume different network states depending on the excitability of the preBötC and the intrinsic membrane properties of preBötC neurons. These network states predict the functional consequences of opioids in the preBötC, and depending on network state, respiratory rhythmogenesis can be either stabilized or suppressed by opioids. We hypothesize that the dynamic nature of preBötC rhythmogenic properties, required to endow breathing with remarkable flexibility, also plays a key role in the dangerous unpredictability of OIRD.SIGNIFICANCE STATEMENT Opioids can cause unpredictable, life-threatening suppression of breathing. This apparent unpredictability makes clinical management of opioids difficult while also making it challenging to define the underlying mechanisms of OIRD. Here, we find in brainstem slices that the preBötC, an opioid-sensitive subregion of the brainstem, has an optimal configuration of cellular and network properties that results in a maximally stable breathing rhythm. These properties are dynamic, and the state of each individual preBötC network relative to the optimal configuration of the network predicts how vulnerable rhythmogenesis is to the effects of opioids. These insights establish a framework for understanding how endogenous and exogenous modulation of the rhythmogenic state of the preBötC can increase or decrease the risk of OIRD.


Assuntos
Analgésicos Opioides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Centro Respiratório/efeitos dos fármacos , Centro Respiratório/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Cultura de Órgãos
4.
J Neurophysiol ; 128(1): 181-196, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35675444

RESUMO

Cellular and network properties must be capable of generating rhythmic activity that is both flexible and stable. This is particularly important for breathing, a rhythmic behavior that dynamically adapts to environmental, behavioral, and metabolic changes from the first to the last breath. The pre-Bötzinger complex (preBötC), located within the ventral medulla, is responsible for producing rhythmic inspiration. Its cellular properties must be tunable, flexible as well as stabilizing. Here, we explore the role of the hyperpolarization-activated, nonselective cation current (Ih) for stabilizing PreBötC activity during opioid exposure and reduced excitatory synaptic transmission. Introducing Ih into an in silico preBötC network predicts that loss of this depolarizing current should significantly slow the inspiratory rhythm. By contrast, in vitro and in vivo experiments revealed that the loss of Ih minimally affected breathing frequency, but destabilized rhythmogenesis through the generation of incompletely synchronized bursts (burstlets). Associated with the loss of Ih was an increased susceptibility of breathing to opioid-induced respiratory depression or weakened excitatory synaptic interactions, a paradoxical depolarization at the cellular level, and the suppression of tonic spiking. Tonic spiking activity is generated by nonrhythmic excitatory and inhibitory preBötC neurons, of which a large percentage express Ih. Together, our results suggest that Ih is important for maintaining tonic spiking, stabilizing inspiratory rhythmogenesis, and protecting breathing against perturbations or changes in network state.NEW & NOTEWORTHY The Ih current plays multiple roles within the preBötC. This current is important for promoting intrinsic tonic spiking activity in excitatory and inhibitory neurons and for preserving rhythmic function during conditions that dampen network excitability, such as in the context of opioid-induced respiratory depression. We therefore propose that the Ih current expands the dynamic range of rhythmogenesis, buffers the preBötC against network perturbations, and stabilizes rhythmogenesis by preventing the generation of unsynchronized bursts.


Assuntos
Analgésicos Opioides , Insuficiência Respiratória , Analgésicos Opioides/farmacologia , Humanos , Bulbo/fisiologia , Neurônios/fisiologia , Centro Respiratório/fisiologia , Transmissão Sináptica/fisiologia
5.
Physiology (Bethesda) ; 35(6): 375-390, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052774

RESUMO

Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.


Assuntos
Insuficiência Respiratória/patologia , Síndrome de Rett/patologia , Animais , Humanos , Estresse Oxidativo/fisiologia , Respiração , Insuficiência Respiratória/etiologia , Síndrome de Rett/complicações
6.
J Neurosci ; 39(30): 5881-5896, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31097620

RESUMO

Rodents are the most commonly studied model system in neuroscience, but surprisingly few studies investigate the natural sensory stimuli that rodent nervous systems evolved to interpret. Even fewer studies examine neural responses to these natural stimuli. Decades of research have investigated the rat vibrissal (whisker) system in the context of direct touch and tactile stimulation, but recent work has shown that rats also use their whiskers to help detect and localize airflow. The present study investigates the neural basis for this ability as dictated by the mechanical response of whiskers to airflow. Mechanical experiments show that a whisker's vibration magnitude depends on airspeed and the intrinsic shape of the whisker. Surprisingly, the direction of the whisker's vibration changes as a function of airflow speed: vibrations transition from parallel to perpendicular with respect to the airflow as airspeed increases. Recordings from primary sensory trigeminal ganglion neurons show that these neurons exhibit responses consistent with those that would be predicted from direct touch. Trigeminal neuron firing rate increases with airspeed, is modulated by the orientation of the whisker relative to the airflow, and is influenced by the whisker's resonant frequencies. We develop a simple model to describe how a population of neurons could leverage mechanical relationships to decode both airspeed and direction. These results open new avenues for studying vibrissotactile regions of the brain in the context of evolutionarily important airflow-sensing behaviors and olfactory search. Although this study used only female rats, all results are expected to generalize to male rats.SIGNIFICANCE STATEMENT The rodent vibrissal (whisker) system has been studied for decades in the context of direct tactile sensation, but recent work has indicated that rats also use whiskers to help localize airflow. Neural circuits in somatosensory regions of the rodent brain thus likely evolved in part to process airflow information. This study investigates the whiskers' mechanical response to airflow and the associated neural response. Airspeed affects the magnitude of whisker vibration and the response magnitude of whisker-sensitive primary sensory neurons in the trigeminal ganglion. Surprisingly, the direction of vibration and the associated directionally dependent neural response changes with airspeed. These findings suggest a population code for airflow speed and direction and open new avenues for studying vibrissotactile regions of the brain.


Assuntos
Percepção do Tato/fisiologia , Gânglio Trigeminal/fisiologia , Vibração , Vibrissas/fisiologia , Animais , Feminino , Masculino , Estimulação Física/métodos , Ratos , Ratos Long-Evans
7.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253582

RESUMO

The preBötzinger complex (preBötC), located in the medulla, is the essential rhythm-generating neural network for breathing. The actions of opioids on this network impair its ability to generate robust, rhythmic output, contributing to life-threatening opioid-induced respiratory depression (OIRD). The occurrence of OIRD varies across individuals and internal and external states, increasing the risk of opioid use, yet the mechanisms of this variability are largely unknown. In this study, we utilize a computational model of the preBötC to perform several in silico experiments exploring how differences in network topology and the intrinsic properties of preBötC neurons influence the sensitivity of the network rhythm to opioids. We find that rhythms produced by preBötC networks in silico exhibit variable responses to simulated opioids, similar to the preBötC network in vitro. This variability is primarily due to random differences in network topology and can be manipulated by imposed changes in network connectivity and intrinsic neuronal properties. Our results identify features of the preBötC network that may regulate its susceptibility to opioids.


Assuntos
Analgésicos Opioides , Neurônios , Humanos , Analgésicos Opioides/efeitos adversos , Neurônios/fisiologia , Respiração , Bulbo/fisiologia , Centro Respiratório/fisiologia
8.
Nat Commun ; 14(1): 5300, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652903

RESUMO

Sighs prevent the collapse of alveoli in the lungs, initiate arousal under hypoxic conditions, and are an expression of sadness and relief. Sighs are periodically superimposed on normal breaths, known as eupnea. Implicated in the generation of these rhythmic behaviors is the preBötzinger complex (preBötC). Our experimental evidence suggests that purinergic signaling is necessary to generate spontaneous and hypoxia-induced sighs in a mouse model. Our results demonstrate that driving calcium increases in astrocytes through pharmacological methods robustly increases sigh, but not eupnea, frequency. Calcium imaging of preBötC slices corroborates this finding with an increase in astrocytic calcium upon application of sigh modulators, increasing intracellular calcium through g-protein signaling. Moreover, photo-activation of preBötC astrocytes is sufficient to elicit sigh activity, and this response is blocked with purinergic antagonists. We conclude that sighs are modulated through neuron-glia coupling in the preBötC network, where the distinct modulatory responses of neurons and glia allow for both rhythms to be independently regulated.


Assuntos
Cálcio , Neuroglia , Animais , Camundongos , Astrócitos , Neurônios , Transdução de Sinais , Hipóxia
9.
Elife ; 102021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402425

RESUMO

The analgesic utility of opioid-based drugs is limited by the life-threatening risk of respiratory depression. Opioid-induced respiratory depression (OIRD), mediated by the µ-opioid receptor (MOR), is characterized by a pronounced decrease in the frequency and regularity of the inspiratory rhythm, which originates from the medullary preBötzinger Complex (preBötC). To unravel the cellular- and network-level consequences of MOR activation in the preBötC, MOR-expressing neurons were optogenetically identified and manipulated in transgenic mice in vitro and in vivo. Based on these results, a model of OIRD was developed in silico. We conclude that hyperpolarization of MOR-expressing preBötC neurons alone does not phenocopy OIRD. Instead, the effects of MOR activation are twofold: (1) pre-inspiratory spiking is reduced and (2) excitatory synaptic transmission is suppressed, thereby disrupting network-driven rhythmogenesis. These dual mechanisms of opioid action act synergistically to make the normally robust inspiratory rhythm-generating network particularly prone to collapse when challenged with exogenous opioids.


Assuntos
Analgésicos Opioides/efeitos adversos , Receptores Opioides mu/genética , Centro Respiratório/efeitos dos fármacos , Insuficiência Respiratória/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Receptores Opioides mu/metabolismo , Insuficiência Respiratória/induzido quimicamente , Transmissão Sináptica/fisiologia
10.
Curr Biol ; 30(5): 815-826.e5, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32004452

RESUMO

Compared to our understanding of the response properties of receptors in the auditory and visual systems, we have only a limited understanding of the mechanoreceptor responses that underlie tactile sensation. Here, we exploit the stereotyped morphology of the rat vibrissal (whisker) array to investigate coding and transduction properties of identified primary tactile afferents. We performed in vivo intra-axonal recording and labeling experiments to quantify response characteristics of four different types of identified mechanoreceptors in the vibrissal follicle: ring-sinus Merkel; lanceolate; clublike; and rete-ridge collar Merkel. Of these types, only ring-sinus Merkel endings exhibited slowly adapting properties. A weak inverse relationship between response magnitude and onset response latency was found across all types. All afferents exhibited strong "angular tuning," i.e., their response magnitude and latency depended on the whisker's deflection angle. Although previous studies suggested that this tuning should be aligned with the angular location of the mechanoreceptor in the follicle, such alignment was observed only for Merkel afferents; angular tuning of the other afferent types showed no clear alignment with mechanoreceptor location. Biomechanical modeling suggested that this tuning difference might be explained by mechanoreceptors' differential sensitivity to the force directed along the whisker length. Electron microscopic investigations of Merkel endings and lanceolate endings at the level of the ring sinus revealed unique anatomical features that may promote these differential sensitivities. The present study systematically integrates biomechanical principles with the anatomical and morphological characterization of primary afferent endings to describe the physical and cellular processing that shapes the neural representation of touch.


Assuntos
Axônios/fisiologia , Mecanorreceptores/fisiologia , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Animais , Fenômenos Biomecânicos , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley
11.
Neuron ; 102(5): 911-913, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31170398

RESUMO

A recent Nature paper shows that activity in rodent forelimb somatosensory cortex is related to the animal's behavioral report of vibration intensity and identifies candidate mechanoreceptors responsible for the cortical response. Results highlight striking anatomical and neural differences from primates.


Assuntos
Córtex Somatossensorial , Vibração , Animais , Membro Anterior , Mecanorreceptores
12.
Curr Opin Neurobiol ; 40: 178-188, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27632212

RESUMO

We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp.


Assuntos
Fenômenos Mecânicos , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Animais , Sinais (Psicologia) , Tato/fisiologia
13.
Elife ; 52016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27348221

RESUMO

Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact. Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics of contact. We used models of whisker bending to quantify mechanical signals (forces and moments) at the whisker base while simultaneously monitoring whisker kinematics and recording single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel manual stimulation technique to deflect whiskers in a way that decouples kinematics from mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly encode mechanical signals when the whisker is deflected in this decoupled stimulus space.


Assuntos
Fenômenos Biomecânicos , Neurônios/fisiologia , Gânglio Trigeminal/fisiologia , Vibrissas/fisiologia , Animais , Modelos Neurológicos , Estimulação Física , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa