RESUMO
Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems.
Assuntos
Evolução Biológica , Seleção Genética , Animais , Caramujos/genética , Genoma/genética , Especiação GenéticaRESUMO
BACKGROUND: Many parasitic plants of the genera Striga and Cuscuta inflict huge agricultural damage worldwide. To form and maintain a connection with a host plant, parasitic plants deploy virulence factors (VFs) that interact with host biology. They possess a secretome that represents the complement of proteins secreted from cells and like other plant parasites such as fungi, bacteria or nematodes, some secreted proteins represent VFs crucial to successful host colonisation. Understanding the genome-wide complement of putative secreted proteins from parasitic plants, and their expression during host invasion, will advance understanding of virulence mechanisms used by parasitic plants to suppress/evade host immune responses and to establish and maintain a parasite-host interaction. RESULTS: We conducted a comparative analysis of the secretomes of root (Striga spp.) and shoot (Cuscuta spp.) parasitic plants, to enable prediction of candidate VFs. Using orthogroup clustering and protein domain analyses we identified gene families/functional annotations common to both Striga and Cuscuta species that were not present in their closest non-parasitic relatives (e.g. strictosidine synthase like enzymes), or specific to either the Striga or Cuscuta secretomes. For example, Striga secretomes were strongly associated with 'PAR1' protein domains. These were rare in the Cuscuta secretomes but an abundance of 'GMC oxidoreductase' domains were found, that were not present in the Striga secretomes. We then conducted transcriptional profiling of genes encoding putatively secreted proteins for the most agriculturally damaging root parasitic weed of cereals, S. hermonthica. A significant portion of the Striga-specific secretome set was differentially expressed during parasitism, which we probed further to identify genes following a 'wave-like' expression pattern peaking in the early penetration stage of infection. We identified 39 genes encoding putative VFs with functions such as cell wall modification, immune suppression, protease, kinase, or peroxidase activities, that are excellent candidates for future functional studies. CONCLUSIONS: Our study represents a comprehensive secretome analysis among parasitic plants and revealed both similarities and differences in candidate VFs between Striga and Cuscuta species. This knowledge is crucial for the development of new management strategies and delaying the evolution of virulence in parasitic weeds.
Assuntos
Cuscuta , Parasitos , Striga , Animais , Striga/genética , Cuscuta/genética , Secretoma , Fatores de Virulência/genética , Plantas DaninhasRESUMO
Chromosomal inversions contribute widely to adaptation and speciation, yet they present a unique evolutionary puzzle as both their allelic content and frequency evolve in a feedback loop. In this simulation study, we quantified the role of the allelic content in determining the long-term fate of the inversion. Recessive deleterious mutations accumulated on both arrangements with most of them being private to a given arrangement. This led to increasing overdominance, allowing for the maintenance of the inversion polymorphism and generating strong non-adaptive divergence between arrangements. The accumulation of mutations was mitigated by gene conversion but nevertheless led to the fitness decline of at least one homokaryotype under all considered conditions. Surprisingly, this fitness degradation could be permanently halted by the branching of an arrangement into multiple highly divergent haplotypes. Our results highlight the dynamic features of inversions by showing how the non-adaptive evolution of allelic content can play a major role in the fate of the inversion.
Assuntos
Inversão Cromossômica , Mutação , Evolução Molecular , Conversão Gênica , Rearranjo Gênico , Haplótipos , Modelos GenéticosRESUMO
Sandy beaches are biogeochemical hotspots that bridge marine and terrestrial ecosystems via the transfer of organic matter, such as seaweed (termed wrack). A keystone of this unique ecosystem is the microbial community, which helps to degrade wrack and re-mineralize nutrients. However, little is known about this community. Here, we characterize the wrackbed microbiome as well as the microbiome of a primary consumer, the seaweed fly Coelopa frigida, and examine how they change along one of the most studied ecological gradients in the world, the transition from the marine North Sea to the brackish Baltic Sea. We found that polysaccharide degraders dominated both microbiomes, but there were still consistent differences between wrackbed and fly samples. Furthermore, we observed a shift in both microbial communities and functionality between the North and Baltic Sea driven by changes in the frequency of different groups of known polysaccharide degraders. We hypothesize that microbes were selected for their abilities to degrade different polysaccharides corresponding to a shift in polysaccharide content in the different seaweed communities. Our results reveal the complexities of both the wrackbed microbial community, with different groups specialized to different roles, and the cascading trophic consequences of shifts in the near shore algal community.
Assuntos
Ecossistema , Microbiota , Mar do Norte , Filogeografia , Microbiota/genética , Países BálticosRESUMO
Inversions are thought to play a key role in adaptation and speciation, suppressing recombination between diverging populations. Genes influencing adaptive traits cluster in inversions, and changes in inversion frequencies are associated with environmental differences. However, in many organisms, it is unclear if inversions are geographically and taxonomically widespread. The intertidal snail, Littorina saxatilis, is one such example. Strong associations between putative polymorphic inversions and phenotypic differences have been demonstrated between two ecotypes of L. saxatilis in Sweden and inferred elsewhere, but no direct evidence for inversion polymorphism currently exists across the species range. Using whole genome data from 107 snails, most inversion polymorphisms were found to be widespread across the species range. The frequencies of some inversion arrangements were significantly different among ecotypes, suggesting a parallel adaptive role. Many inversions were also polymorphic in the sister species, L. arcana, hinting at an ancient origin.
RESUMO
Parasites have evolved proteins, virulence factors (VFs), that facilitate plant colonisation, however VFs mediating parasitic plant-host interactions are poorly understood. Striga hermonthica is an obligate, root-parasitic plant of cereal hosts in sub-Saharan Africa, causing devastating yield losses. Understanding the molecular nature and allelic variation of VFs in S. hermonthica is essential for breeding resistance and delaying the evolution of parasite virulence. We assembled the S. hermonthica genome and identified secreted proteins using in silico prediction. Pooled sequencing of parasites growing on a susceptible and a strongly resistant rice host allowed us to scan for loci where selection imposed by the resistant host had elevated the frequency of alleles contributing to successful colonisation. Thirty-eight putatively secreted VFs had very different allele frequencies with functions including host cell wall modification, protease or protease inhibitor and kinase activities. These candidate loci had significantly higher Tajima's D than the genomic background, consistent with balancing selection. Our results reveal diverse strategies used by S. hermonthica to overcome different layers of host resistance. Understanding the maintenance of variation at virulence loci by balancing selection will be critical to managing the evolution of virulence as part of a sustainable control strategy.
Assuntos
Parasitos , Striga , Animais , Produtos Agrícolas , Grão Comestível/genética , Peptídeo Hidrolases , Melhoramento Vegetal , Inibidores de Proteases , Striga/genética , Virulência/genética , Fatores de Virulência/genéticaRESUMO
Speciation underlies the generation of novel biodiversity. Yet, there is much to learn about how natural selection shapes genomes during speciation. Selection is assumed to act against gene flow at barrier loci, promoting reproductive isolation. However, evidence for gene flow and selection is often indirect and we know very little about the temporal stability of barrier loci. Here we utilize haplodiploidy to identify candidate male barrier loci in hybrids between two wood ant species. As ant males are haploid, they are expected to reveal recessive barrier loci, which can be masked in diploid females if heterozygous. We then test for barrier stability in a sample collected 10 years later and use survival analysis to provide a direct measure of natural selection acting on candidate male barrier loci. We find multiple candidate male barrier loci scattered throughout the genome. Surprisingly, a proportion of them are not stable after 10 years, natural selection apparently switching from acting against to favouring introgression in the later sample. Instability of the barrier effect and natural selection for introgressed alleles could be due to environment-dependent selection, emphasizing the need to consider temporal variation in the strength of natural selection and the stability of the barrier effect at putative barrier loci in future speciation work.
Assuntos
Formigas , Animais , Formigas/genética , Feminino , Fluxo Gênico , Especiação Genética , Genética Populacional , Masculino , Isolamento Reprodutivo , Seleção GenéticaRESUMO
Zones of secondary contact between closely related taxa are a common legacy of the Quaternary ice ages. Despite their abundance, the factors that keep species apart and prevent hybridization are often unknown. Here, we study a very narrow contact zone between three closely related butterfly species of the Erebia tyndarus species complex. Using genomic data, we first determined whether gene flow occurs and then assessed whether it might be hampered by differences in chromosome number between some species. We found interspecific gene flow between sibling species that differ in karyotype by one chromosome. Conversely, only F1 hybrids occurred between two species that have the same karyotype, forming a steep genomic cline. In a second step, we fitted clines to phenotypic, ecological and parasitic data to identify the factors associated with the genetic cline. We found clines for phenotypic data and the prevalence of the endosymbiont parasite Wolbachia to overlap with the genetic cline, suggesting that they might be drivers for separating the two species. Overall, our results highlight that some gene flow is possible between closely related species despite different chromosome numbers, but that other barriers restrict such gene flow.
Assuntos
Borboletas/genética , Fluxo Gênico , Isolamento Reprodutivo , Animais , Borboletas/anatomia & histologia , Borboletas/microbiologia , Ecossistema , Hibridização Genética , Fenótipo , Suíça , Asas de Animais/anatomia & histologia , Wolbachia/genéticaRESUMO
Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis, divergent selection forms strong barriers to gene flow, while the role of post-zygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Post-zygotic barriers might include genetic incompatibilities (e.g. Dobzhansky-Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1,011 embryos (mean 130 ± 123), and abortion rates varied between 0% and 100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterized female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index, and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant post-zygotic barriers contributing to ecotype divergence, and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females.
Assuntos
Fluxo Gênico , Caramujos/genética , Animais , Tamanho da Ninhada/genética , Ecótipo , Perda do Embrião/genética , Feminino , Heterozigoto , SuéciaRESUMO
Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.
Assuntos
Genômica , Biodiversidade , Modelos GenéticosRESUMO
Hybrid zone movement may result in substantial unidirectional introgression of selectively neutral material from the local to the advancing species, leaving a genetic footprint. This genetic footprint is represented by a trail of asymmetric tails and displaced cline centres in the wake of the moving hybrid zone. A peak of admixture linkage disequilibrium is predicted to exist ahead of the centre of the moving hybrid zone. We test these predictions of the movement hypothesis in a hybrid zone between common (Bufo bufo) and spined toads (B. spinosus), using 31 nuclear and one mtDNA SNPs along a transect in the northwest of France. Average effective selection in Bufo hybrids is low and clines vary in shape and centre. A weak pattern of asymmetric introgression is inferred from cline discordance of seven nuclear markers. The dominant direction of gene flow is from B. spinosus to B. bufo and is in support of southward movement of the hybrid zone. Conversely, a peak of admixture linkage disequilibrium north of the hybrid zone suggests northward movement. These contrasting results can be explained by reproductive isolation of the B. spinosus and B. bufo gene pools at the southern (B. spinosus) side of the hybrid zone. The joint occurrence of asymmetric introgression and admixture linkage disequilibrium can also be explained by the combination of low dispersal and random genetic drift due to low effective population sizes.
Assuntos
Bufo bufo/genética , Fluxo Gênico/genética , Genética Populacional , Hibridização Genética , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , França , Deriva Genética , Desequilíbrio de Ligação/genética , Repetições de Microssatélites/genéticaRESUMO
Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients.
Assuntos
Adaptação Fisiológica/genética , Inversão Cromossômica/genética , Gastrópodes/genética , Especiação Genética , Animais , Ecótipo , Desequilíbrio de Ligação/genética , Seleção GenéticaRESUMO
In an ideal world, funding agencies could identify the best scientists and projects and provide them with the resources to undertake these projects. Most scientists would agree that in practice, how funding for scientific research is allocated is far from ideal and likely compromises research quality. We, nine evolutionary biologists from different countries and career stages, provide a comparative summary of our impressions on funding strategies for evolutionary biology across eleven different funding agencies. We also assess whether and how funding effectiveness might be improved. We focused this assessment on 14 elements within four broad categories: (a) topical shaping of science, (b) distribution of funds, (c) application and review procedures, and (d) incentives for mobility and diversity. These comparisons revealed striking among-country variation in those elements, including wide variation in funding rates, the effort and burden required for grant applications, and the extent of emphasis on societal relevance and individual mobility. We use these observations to provide constructive suggestions for the future and urge the need to further gather informed considerations from scientists on the effects of funding policies on science across countries and research fields.
Assuntos
Evolução Biológica , Financiamento de Capital , Apoio à Pesquisa como Assunto , Ciência/economia , Política Pública , Estados UnidosRESUMO
Obligate parthenogenesis is found in only 0.1% of the vertebrate species, is thought to be relatively short lived and is typically of hybrid origin. However, neither the evolutionary persistence of asexuality in vertebrates, nor the conditions that allow the generation of new parthenogenetic lineages are currently well understood. It has been proposed that vertebrate parthenogenetic lineages arise from hybridisation between two divergent taxa within a specific range of phylogenetic distances (the 'Balance Hypothesis'). Moreover, parthenogenetic species often maintain a certain level of hybridisation with their closest sexual relatives, potentially generating new polyploid hybrid lineages. Here we address the role of hybridisation in the origin and evolutionary lifespan of vertebrate parthenogens. We use a set of microsatellite markers to characterise the origins of parthenogens in the lizard genus Darevskia, to study the distinctiveness of sexual and asexual taxa currently in sympatry, and to analyse the evolutionary consequences of interspecific hybridisation between asexual females and sexual males. We find that parthenogens result from multiple past hybridisation events between species from specific lineages over a range of phylogenetic distances. This suggests that the Balance Hypothesis needs to allow for lineage-specific effects, as envisaged in the Phylogenetic Constraint Hypothesis. Our results show recurrent backcrossing between sexual and parthenogenic Darevskia but neither gene flow nor formation of new asexual lineages. We suggest that, along with their demographic advantage, parthenogens gain additional leverage to outcompete sexuals in nature when the retention of sexual reproductive machinery allows backcrossing with their sexual ancestors.
Assuntos
Evolução Biológica , Lagartos/genética , Partenogênese/genética , Reprodução/genética , Animais , Feminino , Hibridização Genética/genética , Lagartos/fisiologia , Masculino , Repetições de Microssatélites/genética , FilogeniaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
During the process of speciation, populations may diverge for traits and at their underlying loci that contribute barriers to gene flow. These barrier traits and barrier loci underlie individual barrier effects, by which we mean the contribution that a barrier locus or trait-or some combination of barrier loci or traits-makes to overall isolation. The evolution of strong reproductive isolation typically requires the origin of multiple barrier effects. Critically, it also requires the coincidence of barrier effects; for example, two barrier effects, one due to assortative mating and the other due to hybrid inviability, create a stronger overall barrier to gene flow if they coincide than if they distinguish independent pairs of populations. Here, we define "coupling" as any process that generates coincidence of barrier effects, resulting in a stronger overall barrier to gene flow. We argue that speciation research, both empirical and theoretical, needs to consider both the origin of barrier effects and the ways in which they are coupled. Coincidence of barrier effects can occur either as a by-product of selection on individual barrier effects or of population processes, or as an adaptive response to indirect selection. Adaptive coupling may be accompanied by further evolution that enhances individual barrier effects. Reinforcement, classically viewed as the evolution of prezygotic barriers to gene flow in response to costs of hybridization, is an example of this type of process. However, we argue for an extended view of reinforcement that includes coupling processes involving enhancement of any type of additional barrier effect as a result of an existing barrier. This view of coupling and reinforcement may help to guide development of both theoretical and empirical research on the process of speciation.
Assuntos
Especiação Genética , Isolamento Reprodutivo , Adaptação Biológica , Desequilíbrio de Ligação , Modelos Genéticos , Seleção GenéticaRESUMO
In many diploid species, the sex chromosomes play a special role in mediating reproductive isolation. In haplodiploids, where females are diploid and males haploid, the whole genome behaves similarly to the X/Z chromosomes of diploids. Therefore, haplodiploid systems can serve as a model for the role of sex chromosomes in speciation and hybridization. A previously described population of Finnish Formica wood ants displays genome-wide signs of ploidally and sexually antagonistic selection resulting from hybridization. Here, hybrid females have increased survivorship but hybrid males are inviable. To understand how the unusual hybrid population may be maintained, we developed a mathematical model with hybrid incompatibility, female heterozygote advantage, recombination and assortative mating. The rugged fitness landscape resulting from the co-occurrence of heterozygote advantage and hybrid incompatibility results in a sexual conflict in haplodiploids, which is caused by the ploidy difference. Thus, whereas heterozygote advantage always promotes long-term polymorphism in diploids, we find various outcomes in haplodiploids in which the population stabilizes either in favour of males, females or via maximizing the number of introgressed individuals. We discuss these outcomes with respect to the potential long-term fate of the Finnish wood ant population and provide approximations for the extension of the model to multiple incompatibilities. Moreover, we highlight the general implications of our results for speciation and hybridization in haplodiploids versus diploids and how the described fitness relationships could contribute to the outstanding role of sex chromosomes as hotspots of sexual antagonism and genes involved in speciation.
Assuntos
Formigas/genética , Heterozigoto , Hibridização Genética , Cromossomos Sexuais/genética , Animais , Diploide , Feminino , Finlândia , Genética Populacional , Haploidia , Masculino , Modelos GenéticosRESUMO
Host-associated races of phytophagous insects provide a model for understanding how adaptation to a new environment can lead to reproductive isolation and speciation, ultimately enabling us to connect barriers to gene flow to adaptive causes of divergence. The pea aphid (Acyrthosiphon pisum) comprises host races specializing on legume species and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. As host choice produces assortative mating, understanding the underlying mechanisms of choice will contribute directly to understanding of speciation. As host choice in the pea aphid is likely mediated by smell and taste, we use capture sequencing and SNP genotyping to test for the role of chemosensory genes in the divergence between eight host plant species across the continuum of differentiation and sampled at multiple locations across western Europe. We show high differentiation of chemosensory loci relative to control loci in a broad set of pea aphid races and localities, using a model-free approach based on principal component analysis. Olfactory and gustatory receptors form the majority of highly differentiated genes and include loci that were already identified as outliers in a previous study focusing on the three most closely related host races. Consistent indications that chemosensory genes may be good candidates for local adaptation and barriers to gene flow in the pea aphid open the way to further investigations aiming to understand their impact on gene flow and to determine their precise functions in response to host plant metabolites.
Assuntos
Afídeos/genética , Fluxo Gênico , Receptores Odorantes/genética , Isolamento Reprodutivo , Adaptação Biológica/genética , Animais , Europa (Continente) , Fabaceae , Genes de Insetos , Genótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Copy number variation (CNV) makes a major contribution to overall genetic variation and is suspected to play an important role in adaptation. However, aside from a few model species, the extent of CNV in natural populations has seldom been investigated. Here, we report on CNV in the pea aphid Acyrthosiphon pisum, a powerful system for studying the genetic architecture of host-plant adaptation and speciation thanks to multiple host races forming a continuum of genetic divergence. Recent studies have highlighted the potential importance of chemosensory genes, including the gustatory and olfactory receptor gene families (Gr and Or, respectively), in the process of host race formation. We used targeted resequencing to achieve a very high depth of coverage, and thereby revealed the extent of CNV of 434 genes, including 150 chemosensory genes, in 104 individuals distributed across eight host races of the pea aphid. We found that CNV was widespread in our global sample, with a significantly higher occurrence in multigene families, especially in Ors. We also observed a decrease in the gene probability of being completely duplicated or deleted (CDD) with increase in coding sequence length. Genes with CDD variants were usually more polymorphic for copy number, especially in the P450 gene family where toxin resistance may be related to gene dosage. We found that Gr were overrepresented among genes discriminating host races, as were CDD genes and pseudogenes. Our observations shed new light on CNV dynamics and are consistent with CNV playing a role in both local adaptation and speciation.