Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Toxicol Pathol ; 52(2-3): 114-122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38828567

RESUMO

Gliosis, including microgliosis and astrocytosis, can be challenging to interpret in nonclinical studies. Incidences of glial foci in brains and spinal cords of control rats and nonhuman primates (NHPs) were reviewed in the historical control databases from two contract research organizations, including one specializing in neuropathology. In the brain, minimal to mild (grades 1-2) microgliosis was the most common diagnosis, especially in NHPs, although occasional moderate or marked microgliosis (grades 3 and 4) was encountered in both species. Microgliosis was more common in the cerebral cortex, cerebellum, and medulla oblongata in both species and was frequent in the white matter (brain), thalamus, and basal nuclei of NHPs. Gliosis ("not otherwise specified") of minimal severity was diagnosed in similar brain sub-sites for both species and was more common in NHPs compared with rats. Astrocytosis was most prominent in the cerebellum (molecular layer) of NHPs but was otherwise uncommon. In the spinal cord, microgliosis was most common in the lateral white matter tracts in rats and NHPs, and in the dorsal white matter tracts in NHPs. These data indicate that low-grade spontaneous glial responses occur with some frequency in control animals of two common nonclinical species.


Assuntos
Gliose , Medula Espinal , Animais , Gliose/patologia , Ratos , Medula Espinal/patologia , Masculino , Encéfalo/patologia , Feminino , Sistema Nervoso Central/patologia , Macaca fascicularis
2.
J Pharmacol Exp Ther ; 382(3): 277-286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717448

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B; OMIM #252920) is a lethal, pediatric, neuropathic, autosomal recessive, and lysosomal storage disease with no approved therapy. Patients are deficient in the activity of N-acetyl-alpha-glucosaminidase (NAGLU; EC 3.2.150), necessary for normal lysosomal degradation of the glycosaminoglycan heparan sulfate (HS). Tralesinidase alfa (TA), a fusion protein comprised of recombinant human NAGLU and a modified human insulin-like growth factor 2, is in development as an enzyme replacement therapy that is administered via intracerebroventricular (ICV) infusion, thus circumventing the blood brain barrier. Previous studies have confirmed ICV infusion results in widespread distribution of TA throughout the brains of mice and nonhuman primates. We assessed the long-term tolerability, pharmacology, and clinical efficacy of TA in a canine model of MPS IIIB over a 20-month study. Long-term administration of TA was well tolerated as compared with administration of vehicle. TA was widely distributed across brain regions, which was confirmed in a follow-up 8-week pharmacokinetic/pharmacodynamic study. MPS IIIB dogs treated for up to 20 months had near-normal levels of HS and nonreducing ends of HS in cerebrospinal fluid and central nervous system (CNS) tissues. TA-treated MPS IIIB dogs performed better on cognitive tests and had improved CNS pathology and decreased cerebellar volume loss relative to vehicle-treated MPS IIIB dogs. These findings demonstrate the ability of TA to prevent or limit the biochemical, pathologic, and cognitive manifestations of canine MPS IIIB disease, thus providing support of its potential long-term tolerability and efficacy in MPS IIIB subjects. SIGNIFICANCE STATEMENT: This work illustrates the efficacy and tolerability of tralesinidase alfa as a potential therapeutic for patients with mucopolysaccharidosis type IIIB (MPS IIIB) by documenting that administration to the central nervous system of MPS IIIB dogs prevents the accumulation of disease-associated glycosaminoglycans in lysosomes, hepatomegaly, cerebellar atrophy, and cognitive decline.


Assuntos
Mucopolissacaridose III , Animais , Encéfalo/metabolismo , Criança , Modelos Animais de Doenças , Cães , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/líquido cefalorraquidiano , Heparitina Sulfato/uso terapêutico , Humanos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/patologia
3.
Vet Pathol ; 58(1): 10-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33016246

RESUMO

The peripheral nervous system (PNS) relays messages between the central nervous system (brain and spinal cord) and the body. Despite this critical role and widespread distribution, the PNS is often overlooked when investigating disease in diagnostic and experimental pathology. This review highlights key features of neuroanatomy and physiology of the somatic and autonomic PNS, and appropriate PNS sampling and processing techniques. The review considers major classes of PNS lesions including neuronopathy, axonopathy, and myelinopathy, and major categories of PNS disease including toxic, metabolic, and paraneoplastic neuropathies; infectious and inflammatory diseases; and neoplasms. This review describes a broad range of common PNS lesions and their diagnostic criteria and provides many useful references for pathologists who perform PNS evaluations as a regular or occasional task in their comparative pathology practice.


Assuntos
Doenças do Sistema Nervoso Central , Doenças do Sistema Nervoso Periférico , Animais , Sistema Nervoso Central , Doenças do Sistema Nervoso Central/veterinária , Sistema Nervoso Periférico , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/veterinária , Medula Espinal
4.
Regul Toxicol Pharmacol ; 123: 104939, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33961952

RESUMO

In standard general toxicology studies in two species to support clinical development, cyclocreatine, a creatine analog for the treatment of creatine transporter deficiency, caused deaths, convulsions, and/or multi-organ pathology. The potential translatability of these findings to patients was evaluated by comparing toxicity of cyclocreatine in wild-type mice to creatine transporter-deficient mice, a model of the human disease. A biodistribution study indicated greater accumulation of cyclocreatine in the brains of wild-type mice, consistent with its ability to be transported by the creatine transporter. Subsequent toxicology studies confirmed greater sensitivity of wild-type mice to cyclocreatine-induced toxicity. Exposure at the no observed adverse effect level in creatine transporter-deficient (554 µg*hr/ml) mice exceeded exposure at the maximum tolerated dose in wild-type (248 µg*hr/ml) mice. When dosed at 300 mg/kg/day for 3 months, cyclocreatine-related mortality, convulsions, and multi-organ pathology were observed in wild-type mice whereas there were no adverse findings in creatine transporter-deficient mice. Brain vacuolation was common to both strains. Although transporter-deficient mice appeared to be more sensitive, the finding had no functional correlates in this strain. The results highlight the importance of considering models of disease for toxicology in cases where they may be relevant to assessing safety in the intended patient population.


Assuntos
Antineoplásicos/toxicidade , Creatinina/análogos & derivados , Modelos Animais de Doenças , Animais , Encéfalo , Encefalopatias Metabólicas Congênitas , Creatina/deficiência , Creatinina/toxicidade , Humanos , Proteínas de Membrana Transportadoras , Deficiência Intelectual Ligada ao Cromossomo X , Camundongos , Nível de Efeito Adverso não Observado , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Convulsões , Distribuição Tecidual
5.
Toxicol Pathol ; 48(1): 10-18, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31345128

RESUMO

Many preclinical investigations limit the evaluation of the peripheral nervous system (PNS) to paraffin-embedded sections/hematoxylin and eosin-stained sections of the sciatic nerve. This limitation ignores several key mechanisms of toxicity and anatomic differences that may interfere with an accurate assessment of test article effects on the neurons/neurites peripheral to the brain and spinal cord. Ganglion neurons may be exposed to higher concentrations of the test article as compared to neurons in the brain or spinal cord due to differences in capillary permeability. Many peripheral neuropathies are length-dependent, meaning distal nerves may show morphological changes before they are evident in the mid-sciatic nerve. Paraffin-embedded nerves are not optimal to assess myelin changes, notably those leading to demyelination. Differentiating between axonal or myelin degeneration may not be possible from the examination of paraffin-embedded sections. A sampling strategy more consistent with known mechanisms of toxicity, atraumatic harvest of tissues, optimized fixation, and the use of resin and paraffin-embedded sections will greatly enhance the pathologist's ability to observe and characterize effects in the PNS.


Assuntos
Sistema Nervoso Periférico , Testes de Toxicidade , Animais , Encéfalo , Técnicas Histológicas , Bainha de Mielina , Neurônios , Doenças do Sistema Nervoso Periférico , Manejo de Espécimes , Medula Espinal
6.
Toxicol Pathol ; 48(1): 78-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31345129

RESUMO

Assessment of the peripheral nervous system (PNS) tissues during animal toxicity studies generally is included within guiding documents issued by regulatory agencies of individual nations (eg, US Environmental Protection Agency, US Food and Drug Administration) and multinational federations (eg, European Medicines Agency) as well as international cooperative efforts (eg, International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, Organisation for Economic Co-operation and Development). The present list of major regulatory guiding documents categorizes recommendations from around the world for sampling and processing PNS tissues (nerves and ganglia) for general animal toxicity studies (ie, where neurotoxicity is not expected) and specialized neurotoxicity studies (ie, where neurotoxicity is anticipated or known to occur). In general, regulatory guidelines call for collection of one or more sensorimotor nerves (usually the sciatic trunk and its branches), though details vary among agencies. Regulatory guiding documents represent a "starting point," after which additional PNS samples and/or special methods may be implemented at the applicant's discretion. Best practice recommendations for PNS sampling and processing in animal toxicity studies endorsed by multiple global societies of toxicologic pathology encompass and expand on existing regulatory guidelines.


Assuntos
Sistema Nervoso Periférico , Testes de Toxicidade , Animais , Animais de Laboratório , Humanos , Laboratórios , Síndromes Neurotóxicas , Organização para a Cooperação e Desenvolvimento Econômico , Projetos de Pesquisa , Manejo de Espécimes , Estados Unidos , United States Environmental Protection Agency , United States Food and Drug Administration
7.
Toxicol Pathol ; 48(1): 238-243, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31269872

RESUMO

Although necrosis and apoptosis are uncommon, autophagy of sensory neurons (ASN) in trigeminal and dorsal root ganglia is a very common, spontaneous finding in cynomolgus monkeys (Macaca fascicularis). Data from one author's (Butt) laboratory showed 12 of 22 studies (year range 2017 to 2019) that included the evaluation of sensory ganglia from cynomolgus monkeys had at least one control animal with ASN. Autophagy of sensory neurons is characterized by a distinct cell membrane, cytoplasm filled with autolysosomes, disintegrated nuclear membrane, and/or globules of degraded chromatin. Since these changes are consistent with autophagy and indicate an irreversible state, a diagnosis of autophagy is preferred instead of necrosis or degeneration. Sensory ganglia are not commonly evaluated in nonclinical toxicology investigations so many pathologists may be unaware of this common change. Especially due to the typically small group size of monkey studies, the observation of this change in sensory ganglia may lead to a faulty interpretation that this change is due to the test article. This article describes the light microscopic and ultrastructural characteristics of neuronal autophagy in trigeminal and dorsal root ganglia and provides historical control data of the incidence of this change in cynomolgus monkeys.


Assuntos
Autofagia/fisiologia , Gânglios Espinais , Células Receptoras Sensoriais/fisiologia , Animais , Macaca fascicularis , Microscopia
8.
Toxicol Pathol ; 48(1): 105-131, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31426727

RESUMO

The ability to differentiate among normal structures, procedural and processing artifacts, spontaneous background changes, and test article-related effects in the peripheral nervous system (PNS) is essential for interpreting microscopic features of ganglia and nerves evaluated in animal species commonly used in toxicity studies evaluating regulated products and chemicals. This atlas provides images of findings that may be encountered in ganglia and nerves of animal species commonly used in product discovery and development. Most atlas images are of tissues from control animals that were processed using routine methods (ie, immersion fixation in neutral-buffered 10% formalin, embedding in paraffin, sectioning at 5 µm, and staining with hematoxylin and eosin) since these preparations are traditionally applied to study materials produced during most animal toxicity studies. A few images are of tissues processed using special procedures (ie, immersion or perfusion fixation using methanol-free 4% formaldehyde, postfixation in glutaraldehyde and osmium, embedding in hard plastic resin, sectioning at 1 µm, and staining with toluidine blue), since these preparations promote better stabilization of lipids and thus optimal resolution of myelin sheaths. Together, this compilation provides a useful resource for discriminating among normal structures, procedure- and processing-related artifacts, incidental background changes, and treatment-induced findings that may be seen in PNS tissues of laboratory animals.


Assuntos
Sistema Nervoso Periférico/patologia , Testes de Toxicidade , Animais , Animais de Laboratório , Bainha de Mielina , Síndromes Neurotóxicas , Inclusão em Parafina , Coloração e Rotulagem
9.
Toxicol Pathol ; 48(7): 827-844, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912053

RESUMO

Harmonization of diagnostic terminology used during the histopathologic analysis of rodent tissue sections from nonclinical toxicity studies will improve the consistency of data sets produced by laboratories located around the world. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a cooperative enterprise of 4 major societies of toxicologic pathology to develop a globally accepted standard vocabulary for proliferative and nonproliferative lesions in rodents. A prior manuscript (Toxicol Pathol 2012;40[4 Suppl]:87S-157S) defined multiple diagnostic terms for toxicant-induced lesions, common spontaneous and age-related changes, and principal confounding artifacts in the rat and mouse central nervous system (CNS) and peripheral nervous system (PNS). The current article defines 9 new diagnostic terms and updates 2 previous terms for findings in the rodent CNS and PNS, the need for which has become evident in the years since the publication of the initial INHAND nomenclature for findings in rodent neural tissues. The nomenclature presented in this document is also available electronically on the Internet at the goRENI website (http://www.goreni.org/).


Assuntos
Sistema Nervoso Periférico , Animais , Camundongos , Ratos
10.
Toxicol Pathol ; 47(3): 250-263, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30599801

RESUMO

Thorough morphologic evaluations of medical devices placed in or near the nervous system depend on many factors. Pathologists interpreting a neurologic device study must be familiar with the regulatory framework affecting device development, biocompatibility and safety determinants impacting nervous tissue responses, and appropriate study design, including the use of appropriate animal models, group design, device localization, euthanasia time points, tissue examination, sampling and processing, histochemistry and immunohistochemistry, and reporting. This overview contextualizes these features of neurologic medical devices for pathologists engaged in device evaluations.


Assuntos
Desenho de Equipamento/normas , Segurança de Equipamentos/normas , Equipamentos e Provisões/normas , Sistema Nervoso/patologia , Patologistas , Animais , Materiais Biocompatíveis/normas , Humanos , Teste de Materiais/métodos , Legislação de Dispositivos Médicos
11.
Int J Toxicol ; 38(3): 173-182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30852923

RESUMO

Fulranumab, an anti-human nerve growth factor antibody, was evaluated in a series of nonclinical toxicology studies. No treatment effects were observed in adolescent cynomolgus monkeys in standard design, repeat-dose toxicology studies of up to 6 months. Adverse effects on the developing nervous system were observed in offspring of pregnant cynomolgus monkeys treated with fulranumab. Subsequent studies including detailed morphologic investigations of the nervous system did reveal fulranumab-related changes in adult cynomolgus monkeys; this article is focused on those findings. A single dose of ≥1 mg/kg fulranumab administered subcutaneously (SC) caused a decrease in neuron and sympathetic ganglion size (superior cervical ganglion), observed morphologically and stereologically, with a resulting appearance of increased glial cell density. Similar results were observed in repeat-dose (15 to 52 weeks) toxicity studies at ≤50 mg/kg/wk fulranumab SC. These effects recovered after a 3-month treatment-free period. Fulranumab did not cause any neuronal death, necrosis, apoptosis, or any apparent decrease in function of sympathetic neurons/ganglia at any time point examined. A no observed effect level (NOEL) was established at 0.25 mg/kg fulranumab SC every 4 weeks for 28 weeks.


Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Fator de Crescimento Neural/antagonistas & inibidores , Animais , Sistema Nervoso Central/efeitos dos fármacos , Feminino , Macaca fascicularis , Masculino , Neurônios/efeitos dos fármacos , Nível de Efeito Adverso não Observado , Sistema Nervoso Periférico/efeitos dos fármacos , Gravidez , Testes de Toxicidade Crônica
12.
Toxicol Pathol ; 46(8): 1028-1036, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30295173

RESUMO

Peripheral nervous system (PNS) toxicity is a frequent adverse effect encountered in patients treated with certain therapeutics (e.g., antiretroviral drugs, cancer chemotherapeutics), in occupational workers exposed to industrial chemicals (e.g., solvents), or during accidental exposures to household chemicals and/or environmental agents (e.g., pesticides). However, the literature and expertise needed for the effective design, conduct, analysis, and reporting of safety studies to identify and define PNS toxicity are hard to find. This half-day course familiarized participants with basic PNS biology; causes and mechanisms of PNS pathology; classic methods and current best practice recommendations for PNS sampling, preparation, and evaluation; and examples of commonly observed lesions and artifacts. Three concluding case presentations synthesized information from the prior technical lectures by presenting real-world examples of lesions caused by drugs and chemicals to demonstrate how PNS toxicity may be addressed in evaluating product safety during nonclinical studies. Topics emphasized comparative and correlative data among animal species used in toxicity studies and clinical evaluation in humans in order to facilitate the translation of animal data into human risk assessment with respect to PNS toxicologic pathology.


Assuntos
Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Animais , Humanos
13.
Toxicol Pathol ; 46(4): 372-402, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29787347

RESUMO

Peripheral nervous system (PNS) toxicity is surveyed inconsistently in nonclinical general toxicity studies. These Society of Toxicologic Pathology "best practice" recommendations are designed to ensure consistent, efficient, and effective sampling, processing, and evaluation of PNS tissues for four different situations encountered during nonclinical general toxicity (screening) and dedicated neurotoxicity studies. For toxicity studies where neurotoxicity is unknown or not anticipated (situation 1), PNS evaluation may be limited to one sensorimotor spinal nerve. If somatic PNS neurotoxicity is suspected (situation 2), analysis minimally should include three spinal nerves, multiple dorsal root ganglia, and a trigeminal ganglion. If autonomic PNS neuropathy is suspected (situation 3), parasympathetic and sympathetic ganglia should be assessed. For dedicated neurotoxicity studies where a neurotoxic effect is expected (situation 4), PNS sampling follows the strategy for situations 2 and/or 3, as dictated by functional or other compound/target-specific data. For all situations, bilateral sampling with unilateral processing is acceptable. For situations 1-3, PNS is processed conventionally (immersion in buffered formalin, paraffin embedding, and hematoxylin and eosin staining). For situation 4 (and situations 2 and 3 if resources and timing permit), perfusion fixation with methanol-free fixative is recommended. Where PNS neurotoxicity is suspected or likely, at least one (situations 2 and 3) or two (situation 4) nerve cross sections should be postfixed with glutaraldehyde and osmium before hard plastic resin embedding; soft plastic embedding is not a suitable substitute for hard plastic. Special methods may be used if warranted to further characterize PNS findings. Initial PNS analysis should be informed, not masked ("blinded"). Institutions may adapt these recommendations to fit their specific programmatic requirements but may need to explain in project documentation the rationale for their chosen PNS sampling, processing, and evaluation strategy.


Assuntos
Técnicas Histológicas/normas , Sistema Nervoso Periférico , Manejo de Espécimes/normas , Toxicologia/normas , Animais , Técnicas Histológicas/métodos , Humanos , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/patologia , Manejo de Espécimes/métodos , Toxicologia/métodos
14.
Vet Anaesth Analg ; 45(2): 212-226, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29361418

RESUMO

OBJECTIVE: To evaluate target engagement of intracisternally (IC) delivered TRPV1 agonist, resiniferatoxin (RTX), as measured by primary afferent and dorsal horn substance P immunoreactivity (sP-IR), histopathology and thermal escape latencies in dogs. STUDY DESIGN: Prospective experimental trial. ANIMALS: Fourteen adult male Beagle dogs, weighing 10.3-13.2 kg; 11 dogs surviving to scheduled euthanasia. METHODS: Anesthetized dogs were randomly assigned to be administered IC RTX (3.6 µg, 0.1 mL kg-1) in a hyperbaric (hRTX, n = 6), normobaric (nRTX, n = 4) vehicle or a hyperbaric vehicle (hVehicle, n = 4). Over 16 days, animals were examined for thoracic and pelvic limb paw thermal withdrawal latencies and neurologic function. Spinal cords, trigeminal ganglia and dorsal root ganglia (DRGs) were assessed for morphologic changes and sP-IR. RESULTS: IC RTX in anesthetized dogs resulted in a < 1 hour increase in blood pressure. Acute reactions leading to euthanasia within 8 hours occurred in three dogs (two hRTX, one nRTX). All other animals recovered with normal neurologic, bowel and bladder function. Final groups were: vehicle n = 4, hRTX n = 4 and nRTX n = 3. Animals in nRTX and hRTX showed increases in escape latencies in thoracic paws and, to a lesser extent, in pelvic paws, correlating to a loss of sP-IR in cervical cord with smaller reductions in thoracic and lumbar cord. In animals surviving to euthanasia, thickening of the arachnoid membrane (predominantly in the cervical region) was the most consistent change. This change, present in controls, was interpreted to be vehicle related. There was no evidence of structural changes in brain and spinal cord. CONCLUSIONS AND CLINICAL RELEVANCE: IC RTX produced localized loss of spinal and DRG sP with a corresponding thermal analgesia, absent motor impairment or spinal pathology. Loss of three animals emphasizes the need to refine the use of this promising therapeutic modality in managing companion animal pain.


Assuntos
Diterpenos/farmacologia , Cães , Sistema Nervoso/efeitos dos fármacos , Neurotoxinas/farmacologia , Anestesia/veterinária , Animais , Análise Química do Sangue/veterinária , Encéfalo/efeitos dos fármacos , Medula Cervical/efeitos dos fármacos , Diterpenos/administração & dosagem , Diterpenos/sangue , Injeções Intraventriculares , Masculino , Sistema Nervoso/patologia , Neurotoxinas/administração & dosagem , Neurotoxinas/sangue , Limiar da Dor/efeitos dos fármacos , Substância P/metabolismo , Canais de Cátion TRPV/efeitos dos fármacos
15.
J Pharmacol Exp Ther ; 360(2): 313-323, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27856936

RESUMO

Pompe disease is a rare neuromuscular disorder caused by an acid α-glucosidase (GAA) deficiency resulting in glycogen accumulation in muscle, leading to myopathy and respiratory weakness. Reveglucosidase alfa (BMN 701) is an insulin-like growth factor 2-tagged recombinant human acid GAA (rhGAA) that enhances rhGAA cellular uptake via a glycosylation-independent insulin-like growth factor 2 binding region of the cation-independent mannose-6-phosphate receptor (CI-MPR). The studies presented here evaluated the effects of Reveglucosidase alfa treatment on glycogen clearance in muscle relative to rhGAA, as well as changes in respiratory function and glycogen clearance in respiratory-related tissue in a Pompe mouse model (GAAtm1Rabn/J). In a comparison of glycogen clearance in muscle with Reveglucosidase alfa and rhGAA, Reveglucosidase alfa was more effective than rhGAA with 2.8-4.7 lower EC50 values, probably owing to increased cellular uptake. The effect of weekly intravenous administration of Reveglucosidase alfa on respiratory function was monitored in Pompe and wild-type mice using whole body plethysmography. Over 12 weeks of 20-mg/kg Reveglucosidase alfa treatment in Pompe mice, peak inspiratory flow (PIF) and peak expiratory flow (PEF) stabilized with no compensation in respiratory rate and inspiratory time during hypercapnic and recovery conditions compared with vehicle-treated Pompe mice. Dose-related decreases in glycogen levels in both ambulatory and respiratory muscles generally correlated to changes in respiratory function. Improvement of murine PIF and PEF were similar in magnitude to increases in maximal inspiratory and expiratory pressure observed clinically in late onset Pompe patients treated with Reveglucosidase alfa (Byrne et al., manuscript in preparation).


Assuntos
Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/fisiopatologia , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes/farmacologia , Respiração/efeitos dos fármacos , alfa-Glucosidases/farmacologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/metabolismo , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Fatores de Tempo , alfa-Glucosidases/metabolismo , alfa-Glucosidases/farmacocinética , alfa-Glucosidases/uso terapêutico
16.
Regul Toxicol Pharmacol ; 75: 81-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26683030

RESUMO

Male and female C57BL/6J mice were administered diquat dibromide (DQ∙Br2) in their diets at concentrations of 0 (control), 12.5 and 62.5 ppm for 13 weeks to assess the potential effects of DQ on the nigrostriatal dopaminergic system. Achieved dose levels at 62.5 ppm were 6.4 and 7.6 mg DQ (ion)/kg bw/day for males and females, respectively. A separate group of mice was administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) ip as a positive control. The comparative effects of DQ and MPTP on the substantia nigra pars compacta (SNpc) and/or striatum were assessed using neurochemical, neuropathological and stereological endpoints. Morphological and stereological assessments were performed by investigators who were "blinded" to dose group. DQ had no effect on striatal dopamine concentration or dopamine turnover. There was no evidence of neuronal degeneration, astrocytic or microglial activation, or a reduction in the number of tyrosine hydroxylase positive (TH(+)) neurons in the SNpc or neuronal processes in the striatum of DQ-treated mice. These results are consistent with the rapid clearance of DQ from the brain following a single dose of radiolabeled DQ. In contrast, MPTP-treated mice exhibited decreased striatal dopamine concentration, reduced numbers of TH(+) neurons in the SNpc, and neuropathological changes, including neuronal necrosis, as well as astrocytic and microglial activation in the striatum and SNpc.


Assuntos
Encéfalo/efeitos dos fármacos , Diquat/toxicidade , Herbicidas/toxicidade , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Dieta , Diquat/sangue , Diquat/farmacocinética , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Herbicidas/sangue , Herbicidas/farmacocinética , Ácido Homovanílico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Testes de Toxicidade Subcrônica
17.
Antimicrob Agents Chemother ; 59(1): 475-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385101

RESUMO

Tedizolid, a novel oxazolidinone antibacterial, was administered to Long Evans rats by oral gavage once daily for up to 9 months at doses near the maximum tolerated dose (MTD) to evaluate for potential neurotoxicity. Mean plasma exposures of tedizolid at the low-, medium-, and high-dose levels (7.5, 15, and 30 mg/kg of body weight/day for males; 2.5, 5, and 10 mg/kg/day for females) were similar between males and females and were 1.8-, 3.9-, and 8.0-fold greater than exposures in patients at the therapeutic dose (200 mg once daily). Evaluated endpoints included survival, clinical observations, body weight, and food consumption. At 1, 3, 6, and 9 months, ophthalmic examinations, functional observational batteries, and locomotor activity measures were conducted, brain weights/sizes were recorded, and perfusion-fixed tissues were collected from 12 rats/sex/group/time point. A detailed morphological assessment was conducted on brain, eyes, optic nerve/tract, spinal cord, peripheral nerves (includes sciatic, sural, tibial, peroneal, trigeminal), and skeletal muscle. At the end of 9 months, less body weight gain was seen in high-dose males (-6.7%) and females (-5.8%) compared with that seen in controls. There were no tedizolid-related adverse neurobehavioral effects or tedizolid-related histopathologic changes in the central/peripheral nervous systems, including the optic nerve. Results of this study indicate that tedizolid was not neurotoxic when administered long term to pigmented rats at doses near the MTD, which were up to 8-fold higher than the human therapeutic exposure.


Assuntos
Antibacterianos/efeitos adversos , Linezolida/efeitos adversos , Síndromes Neurotóxicas/mortalidade , Organofosfatos/efeitos adversos , Oxazóis/efeitos adversos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Feminino , Linezolida/administração & dosagem , Linezolida/farmacologia , Masculino , Organofosfatos/administração & dosagem , Organofosfatos/farmacologia , Oxazóis/administração & dosagem , Oxazóis/farmacologia , Ratos , Ratos Endogâmicos LEC
18.
Mol Genet Metab ; 114(2): 281-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25257657

RESUMO

The CLN2 form of neuronal ceroid lipofuscinosis, a type of Batten disease, is a lysosomal storage disorder caused by a deficiency of the enzyme tripeptidyl peptidase-1 (TPP1). Patients exhibit progressive neurodegeneration and loss of motor, cognitive, and visual functions, leading to death by the early teenage years. TPP1-null Dachshunds recapitulate human CLN2 disease. To characterize the safety and pharmacology of recombinant human (rh) TPP1 administration to the cerebrospinal fluid (CSF) as a potential enzyme replacement therapy (ERT) for CLN2 disease, TPP1-null and wild-type (WT) Dachshunds were given repeated intracerebroventricular (ICV) infusions and the pharmacokinetic (PK) profile, central nervous system (CNS) distribution, and safety were evaluated. TPP1-null animals and WT controls received 4 or 16mg of rhTPP1 or artificial cerebrospinal fluid (aCSF) vehicle every other week. Elevated CSF TPP1 concentrations were observed for 2-3 days after the first ICV infusion and were approximately 1000-fold higher than plasma levels at the same time points. Anti-rhTPP1 antibodies were detected in CSF and plasma after repeat rhTPP1 administration, with titers generally higher in TPP1-null than in WT animals. Widespread brain distribution of rhTPP1 was observed after chronic administration. Expected histological changes were present due to the CNS delivery catheters and were similar in rhTPP1 and vehicle-treated animals, regardless of genotype. Neuropathological evaluation demonstrated the clearance of lysosomal storage, preservation of neuronal morphology, and reduction in brain inflammation with treatment. This study demonstrates the favorable safety and pharmacology profile of rhTPP1 ERT administered directly to the CNS and supports clinical evaluation in patients with CLN2 disease.


Assuntos
Aminopeptidases/administração & dosagem , Dipeptidil Peptidases e Tripeptidil Peptidases/administração & dosagem , Terapia de Reposição de Enzimas , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Serina Proteases/administração & dosagem , Aminopeptidases/efeitos adversos , Aminopeptidases/imunologia , Aminopeptidases/farmacocinética , Animais , Anticorpos/sangue , Anticorpos/líquido cefalorraquidiano , Encéfalo/patologia , Encéfalo/ultraestrutura , Dipeptidil Peptidases e Tripeptidil Peptidases/efeitos adversos , Dipeptidil Peptidases e Tripeptidil Peptidases/imunologia , Dipeptidil Peptidases e Tripeptidil Peptidases/farmacocinética , Progressão da Doença , Cães , Avaliação Pré-Clínica de Medicamentos , Genótipo , Infusões Intraventriculares , Lipofuscinoses Ceroides Neuronais/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacocinética , Serina Proteases/efeitos adversos , Serina Proteases/imunologia , Serina Proteases/farmacocinética , Tripeptidil-Peptidase 1
19.
Toxicol Pathol ; 43(4): 513-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24935239

RESUMO

Brain sections from control cynomolgus monkeys (Macaca fascicularis) used in toxicology studies were evaluated retrospectively in order to better understand spontaneous background changes in this species. Hematoxylin and eosin-stained slides from 76 animals (38 males and 38 females) of 9 studies were examined. Eleven animals (9 males and 2 females) were each observed to have 1 to 3 findings within the brain sections examined, for a total of 19 findings. No findings were noted in the spinal cord. The most common finding was focal to multifocal perivascular infiltration of mononuclear cells, affecting the parenchyma, the meninges, or the choroid plexus. Additionally, focal gliosis was observed in 6 animals and a single focus of hemosiderin deposition (coincident with focal gliosis and mononuclear cell infiltrate) was noted in 1 animal. Most of the glial foci were composed of cells consistent with microglial cells, with or without admixed lymphocytes. All findings were of slight or minimal severity, lacked an apparent cause, and were considered incidental and of negligible biologic significance. An awareness of the spontaneous incidence of these background findings may facilitate the discernment of toxicologically relevant effects when these findings are observed.


Assuntos
Encéfalo/citologia , Macaca fascicularis/anatomia & histologia , Testes de Toxicidade/métodos , Animais , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Gliose/patologia , Masculino , Microscopia , Valores de Referência , Estudos Retrospectivos
20.
Pain Med ; 16(1): 186-98, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339320

RESUMO

OBJECTIVES: The use of adjuvants in regional anesthesia has increased. However, there are knowledge gaps pertaining to 1) in vivo local tissue effects of these adjuvants; and 2) chemical compatibility and solubility of these drugs in solution with each other and with local anesthetics. This study addresses these gaps in knowledge. DESIGN: In vivo rat safety/toxicopathology study and analytical chemistry study. SETTING: Collaborating Good Laboratory Practice laboratories under the direction of the university-based principal investigator. METHODS: Single-injection formulations of clonidine, buprenorphine, and dexamethasone were combined with either bupivacaine or midazolam, and were administered to groups of rats. Post-injection behavior was monitored to assess changes related to the block. A continuous infusion of bupivacaine, clonidine, and dexamethasone was administered to another group of rats, and behavioral effects were recorded. After 15 days, rats were sacrificed and their nerves/dorsal root ganglia were examined by the pathologist. Samples of combined drug solutions were processed at an analytical chemistry laboratory for compatibility, solubility, and stability. RESULTS: Each of the single-injection formulations produced reversible sensory and/or motor block. None of the study drugs caused damage to any of the nerve segments or related tissue. The text describes the concentrations at which compatibility and solubility of the combined drug solutions were achieved. CONCLUSIONS: Four-drug single-injection formulations are described that 1) had compatible and stable concentrations in solution; and 2) produced reversible nerve block without causing long-term motor or sensory deficits or damage to sciatic nerves/dorsal root ganglia.


Assuntos
Analgésicos/farmacologia , Bupivacaína/farmacologia , Buprenorfina/farmacologia , Clonidina/farmacologia , Dexametasona/farmacologia , Analgésicos/química , Animais , Bupivacaína/química , Buprenorfina/química , Clonidina/química , Dexametasona/química , Combinação de Medicamentos , Masculino , Bloqueio Nervoso/métodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa