Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894980

RESUMO

The common bean (Phaseolus vulgaris L.) is a globally cultivated leguminous crop. Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. phaseoli (Fop), is a significant disease leading to substantial yield loss in common beans. Disease-resistant cultivars are recommended to counteract this. The objective of this investigation was to identify single nucleotide polymorphism (SNP) markers associated with FW resistance and to pinpoint potential resistant common bean accessions within a core collection, utilizing a panel of 157 accessions through the Genome-wide association study (GWAS) approach with TASSEL 5 and GAPIT 3. Phenotypes for Fop race 1 and race 4 were matched with genotypic data from 4740 SNPs of BARCBean6K_3 Infinium Bea Chips. After ranking the 157-accession panel and revealing 21 Fusarium wilt-resistant accessions, the GWAS pinpointed 16 SNPs on chromosomes Pv04, Pv05, Pv07, Pv8, and Pv09 linked to Fop race 1 resistance, 23 SNPs on chromosomes Pv03, Pv04, Pv05, Pv07, Pv09, Pv10, and Pv11 associated with Fop race 4 resistance, and 7 SNPs on chromosomes Pv04 and Pv09 correlated with both Fop race 1 and race 4 resistances. Furthermore, within a 30 kb flanking region of these associated SNPs, a total of 17 candidate genes were identified. Some of these genes were annotated as classical disease resistance protein/enzymes, including NB-ARC domain proteins, Leucine-rich repeat protein kinase family proteins, zinc finger family proteins, P-loopcontaining nucleoside triphosphate hydrolase superfamily, etc. Genomic prediction (GP) accuracy for Fop race resistances ranged from 0.26 to 0.55. This study advanced common bean genetic enhancement through marker-assisted selection (MAS) and genomic selection (GS) strategies, paving the way for improved Fop resistance.


Assuntos
Fusarium , Phaseolus , Fusarium/genética , Estudo de Associação Genômica Ampla , Phaseolus/genética , Genômica , Doenças das Plantas/genética , Resistência à Doença/genética
2.
Theor Appl Genet ; 127(4): 791-807, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24408378

RESUMO

KEY MESSAGE: A stable QTL that may be used in marker-assisted selection in wheat breeding programs was detected for yield, yield components and drought tolerance-related traits in spring wheat association mapping panel. Genome-wide association mapping has become a widespread method of quantitative trait locus (QTL) identification for many crop plants including wheat (Triticum aestivum L.). Its benefit over traditional bi-parental mapping approaches depends on the extent of linkage disequilibrium in the mapping population. The objectives of this study were to determine linkage disequilibrium decay rate and population structure in a spring wheat association mapping panel (n = 285-294) and to identify markers associated with yield and yield components, morphological, phenological, and drought tolerance-related traits. The study was conducted under fully irrigated and rain-fed conditions at Greeley, CO, USA and Melkassa, Ethiopia in 2010 and 2011 (five total environments). Genotypic data were generated using diversity array technology markers. Linkage disequilibrium decay rate extended over a longer genetic distance for the D genome (6.8 cM) than for the A and B genomes (1.7 and 2.0 cM, respectively). Seven subpopulations were identified with population structure analysis. A stable QTL was detected for grain yield on chromosome 2DS both under irrigated and rain-fed conditions. A multi-trait region significant for yield and yield components was found on chromosome 5B. Grain yield QTL on chromosome 1BS co-localized with harvest index QTL. Vegetation indices shared QTL with harvest index on chromosome 1AL and 5A. After validation in relevant genetic backgrounds and environments, QTL detected in this study for yield, yield components and drought tolerance-related traits may be used in marker-assisted selection in wheat breeding programs.


Assuntos
Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla , Umidade , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/genética , Cromossomos de Plantas , Marcadores Genéticos , Genoma de Planta/genética , Desequilíbrio de Ligação/genética , Modelos Genéticos , Fenótipo , Dinâmica Populacional , Característica Quantitativa Herdável , Chuva , Temperatura
3.
Plants (Basel) ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834625

RESUMO

Plant genebanks provide genetic resources for breeding and research programs worldwide. These programs benefit from having access to high-quality, standardized phenotypic and genotypic data. Technological advances have made it possible to collect phenomic and genomic data for genebank collections, which, with the appropriate analytical tools, can directly inform breeding programs. We discuss the importance of considering genebank accession homogeneity and heterogeneity in data collection and documentation. Citing specific examples, we describe how well-documented genomic and phenomic data have met or could meet the needs of plant genetic resource managers and users. We explore future opportunities that may emerge from improved documentation and data integration among plant genetic resource information systems.

4.
PLoS One ; 13(7): e0200646, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30040842

RESUMO

Plant-soil biological interactions are increasingly recognized as a key feature of agroecosystems, promoting both crop and soil health. However, the effectiveness of plant-soil synergies is likely modulated by both root system characteristics and soil management impacts on soil biological communities. To successfully manage for plant-soil interactions, we need to better understand how crops respond to changes in soil management, especially in terms of belowground investment. Specifically, crop genotypes that exhibit reduced plasticity in root growth and investment may not be able to take full advantage of changes in soil biological activity associated with soil health promoting practices. We hypothesized that genotypes with greater belowground investment respond more, in terms of plant growth and crop nitrogen (N) uptake, to compost and earthworm additions, agronomic factors commonly associated with soil health. We evaluated four spring wheat (Triticum aestivum) genotypes with distinct breeding and environmental histories, and one progenitor of wheat (Aegilops tauschii) under low soil fertility conditions in the greenhouse for differences in belowground root biomass and architecture. We then determined how these belowground traits influenced genotype response to additions of compost and earthworms. Measurements included plant growth, biomass, grain yield, root characteristics, plant N uptake, and soil N. Overall, in unamended soils, genotypes differed in above and belowground phenotypic traits. In general, Ae. tauschii had three times greater root: shoot (R:S) ratio, root length, and root biomass relative to wheat genotypes. We found that genotypes with higher R:S ratios responded more positively to compost additions compared to those with lower R:S ratios, particularly in terms of plant aboveground biomass, N uptake and soil N-cycling, and also exhibited greater plasticity in root morphology. Consequently, while higher R:S genotypes had relatively poorer yields in unamended soils, they outperformed lower R:S genotypes in total seed weight under compost treatments. Our findings suggest that genotypes with greater belowground investment may be better able to take advantage of soil health promoting practices, such as the use of organic amendments. These results highlight the need to consider soil management practices (and associated biological communities) in parallel with root phenotypic plasticity when evaluating wheat lines for improvements in plant-soil synergies.


Assuntos
Aegilops/genética , Produtos Agrícolas/fisiologia , Oligoquetos/fisiologia , Raízes de Plantas/genética , Solo/química , Triticum/fisiologia , Animais , Compostagem , Genótipo , Nitrogênio/metabolismo , Fenótipo , Melhoramento Vegetal , Desenvolvimento Vegetal/genética
5.
PLoS One ; 11(4): e0152852, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27058239

RESUMO

Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011-2012 and 2012-2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains.


Assuntos
Flores/genética , Genes Controladores do Desenvolvimento/genética , Genes de Plantas/genética , Fotoperíodo , Estações do Ano , Triticum/genética , Alelos , Flores/crescimento & desenvolvimento , Genótipo , Haplótipos/genética , Triticum/crescimento & desenvolvimento , Estados Unidos
6.
Public Underst Sci ; 11(3): 293-304, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12430533

RESUMO

Transgenic crops among the most controversial "science and society" issues of recent years. Because of the complex techniques involved in creating these crops and the polarized debate over their risks and beliefs, a critical need has arisen for accessible and balanced information on this technology. World Wide Web sites offer several advantages for disseminating information on a fast-changing technical topic, including their global accessibility; and their ability to update information frequently, incorporate multimedia formats, and link to networks of other sites. An alliance between two complementary web sites at Colorado State University and the University of Nebraska-Lincoln takes advantage of the web environment to help fill the need for public information on crop genetic engineering. This article describes the objectives and features of each site. Viewership data and other feedback have shown these web sites to be effective means of reaching public audiences on a complex scientific topic.


Assuntos
Alimentos/história , Serviços de Informação/história , Internet/história , Opinião Pública , Engenharia Genética , História do Século XX , História do Século XXI , Estados Unidos
7.
Front Plant Sci ; 4: 442, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24204374

RESUMO

Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less "leaky" and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g., functional differences between fine and coarse roots) needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria) and rice (Oryza) show approaches to phenotyping of root traits and current understanding of root trait genetics for breeding.

8.
PLoS One ; 7(8): e44179, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957002

RESUMO

Genetic differences among major types of wheat are well characterized; however, little is known about how these distinctions affect the small molecule profile of the wheat seed. Ethanol/water (65% v/v) extracts of seed from 45 wheat lines representing 3 genetically distinct classes, tetraploid durum (Triticum turgidum subspecies durum) (DW) and hexaploid hard and soft bread wheat (T. aestivum subspecies aestivum) (BW) were subjected to ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-TOF-MS). Discriminant analyses distinguished DW from BW with 100% accuracy due to differences in expression of nonpolar and polar ions, with differences attributed to sterol lipids/fatty acids and phospholipids/glycerolipids, respectively. Hard versus soft BW was distinguished with 100% accuracy by polar ions, with differences attributed to heterocyclic amines and polyketides versus phospholipid ions, respectively. This work provides a foundation for identification of metabolite profiles associated with desirable agronomic and human health traits and for assessing how environmental factors impact these characteristics.


Assuntos
Metaboloma , Espectrometria de Massas por Ionização por Electrospray , Triticum/metabolismo , Cromatografia em Gel , Cromatografia de Fase Reversa , Análise por Conglomerados , Análise Discriminante , Análise de Componente Principal , Triticum/classificação
9.
New Phytol ; 170(1): 33-42, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16539601

RESUMO

Selenium is essential for many organisms, but is toxic at higher levels. To investigate the genetic basis of selenate tolerance in Arabidopsis thaliana, quantitative trait loci (QTL) associated with selenate tolerance in accessions Landsberg erecta and Columbia were mapped using recombinant inbred lines (RILs). The selenate tolerance index (TI(D10) = root growth + 30 microm selenate/root growth control x 100%) was fourfold higher for parental line Col-4 (59%) than for parent Ler-0 (15%). Among the 96 F8 RILs, TI(D10) ranged from 11 to 75% (mean 37%). Using composite interval mapping, three QTL were found on chromosomes 1, 3 and 5, which together explained 24% of variation in TI(D10) and 32% of the phenotypic variation for the difference in root length +/- Se (RL(D10)). Highly significant epistatic interactions between the QTL and markers on chromosome 2 explained additional variation for both traits. Potential candidate genes for Se tolerance in each of the QTL regions are discussed. These results offer insight into the genetic basis of selenate tolerance, and may be useful for identification of selenate-tolerance genes.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Locos de Características Quantitativas/genética , Compostos de Selênio/metabolismo , Arabidopsis/crescimento & desenvolvimento , Mapeamento Cromossômico , Cruzamentos Genéticos , Tolerância a Medicamentos , Epistasia Genética , Genes de Plantas , Genoma de Planta , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polimorfismo Genético , Ácido Selênico , Compostos de Selênio/toxicidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa