Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Biol Proced Online ; 25(1): 17, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328878

RESUMO

BACKGROUND: Deinococcus radiodurans is a robust bacterium that can withstand harsh environments that cause oxidative stress to macromolecules due to its cellular structure and physiological functions. Cells release extracellular vesicles for intercellular communication and the transfer of biological information; their payload reflects the status of the source cells. Yet, the biological role and mechanism of Deinococcus radiodurans-derived extracellular vesicles remain unclear. AIM: This study investigated the protective effects of membrane vesicles derived from D. radiodurans (R1-MVs) against H2O2-induced oxidative stress in HaCaT cells. RESULTS: R1-MVs were identified as 322 nm spherical molecules. Pretreatment with R1-MVs inhibited H2O2-mediated apoptosis in HaCaT cells by suppressing the loss of mitochondrial membrane potential and reactive oxygen species (ROS) production. R1-MVs increased the superoxide dismutase (SOD) and catalase (CAT) activities, restored glutathione (GSH) homeostasis, and reduced malondialdehyde (MDA) production in H2O2-exposed HaCaT cells. Moreover, the protective effect of R1-MVs against H2O2-induced oxidative stress in HaCaT cells was dependent on the downregulation of mitogen-activated protein kinase (MAPK) phosphorylation and the upregulation of the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. Furthermore, the weaker protective capabilities of R1-MVs derived from ΔDR2577 mutant than that of the wild-type R1-MVs confirmed our inferences and indicated that SlpA protein plays a crucial role in R1-MVs against H2O2-induced oxidative stress. CONCLUSION: Taken together, R1-MVs exert significant protective effects against H2O2-induced oxidative stress in keratinocytes and have the potential to be applied in radiation-induced oxidative stress models.

2.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638974

RESUMO

Extracellular vesicles (EVs) have recently been isolated from different plants. Plant-derived EVs have been proposed as potent therapeutics and drug-delivery nanoplatforms for delivering biomolecules, including proteins, RNAs, DNAs, and lipids. Herein, Petasites japonicus-derived EVs (PJ-EVs) were isolated through a series of centrifugation steps and characterized using dynamic light scattering and transmission electron microscopy. Immunomodulatory effects of PJ-EVs were assessed using dendritic cells (DCs). PJ-EVs exhibited a spherical morphology with an average size of 122.6 nm. They induced the maturation of DCs via an increase in the expression of surface molecules (CD80, CD86, MHC-I, and MHC-II), production of Th1-polarizing cytokines (TNF-α and IL-12p70), and antigen-presenting ability; however, they reduced the antigen-uptake ability. Furthermore, maturation of DCs induced by PJ-EVs was dependent on the activation and phosphorylation of MAPK and NF-κB signal pathways. Notably, PJ-EV-treated DCs strongly induced the proliferation and differentiation of naïve T cells toward Th1-type T cells and cytotoxic CD8+ T cells along with robust secretion of IFN-γ and IL-2. In conclusion, our study indicates that PJ-EVs can be potent immunostimulatory candidates with an ability of strongly inducing the maturation of DCs.


Assuntos
Adjuvantes Imunológicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Vesículas Extracelulares/imunologia , Petasites/citologia , Plantas Comestíveis/citologia , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Feminino , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Células Th1/imunologia
3.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299130

RESUMO

Although cisplatin is one of most effective chemotherapeutic drugs that is widely used to treat various types of cancer, it can cause undesirable damage in immune cells and normal tissue because of its strong cytotoxicity and non-selectivity. This study was conducted to investigate the cytoprotective effects of Cudrania tricuspidata fruit-derived polysaccharides (CTPS) against cisplatin-induced cytotoxicity in macrophages, lung cancer cell lines, and a mouse model, and to explore the possibility of application of CTPS as a supplement for anticancer therapy. Both cisplatin alone and cisplatin with CTPS induced a significant cytotoxicity in A549 and H460 lung cancer cells, whereas cytotoxicity was suppressed by CTPS in cisplatin-treated RAW264.7 cells. CTPS significantly attenuated the apoptotic and necrotic population, as well as cell penetration in cisplatin-treated RAW264.7 cells, which ultimately inhibited the upregulation of Bcl-2-associated X protein (Bax), cytosolic cytochrome c, poly (adenosine diphosphateribose) polymerase (PARP) cleavage, and caspases-3, -8, and -9, and the downregulation of B cell lymphoma-2 (Bcl-2). The CTPS-induced cytoprotective action was mediated with a reduction in reactive oxygen species production and mitochondrial transmembrane potential loss in cisplatin-treated RAW264.7 cells. In agreement with the results obtained above, CTPS induced the attenuation of cell damage in cisplatin-treated bone marrow-derived macrophages (primary cells). In in vivo studies, CTPS significantly inhibited metastatic colonies and bodyweight loss as well as immunotoxicity in splenic T cells compared to the cisplatin-treated group in lung metastasis-induced mice. Furthermore, CTPS decreased the level of CRE and BUN in serum. In summation, these results suggest that CTPS-induced cytoprotective action may play a role in alleviating the side effects induced by chemotherapeutic drugs.


Assuntos
Cisplatino/toxicidade , Frutas/química , Macrófagos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Moraceae/química , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Animais , Antineoplásicos/toxicidade , Apoptose , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Macrófagos/patologia , Melanoma Experimental/induzido quimicamente , Melanoma Experimental/patologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Substâncias Protetoras/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Molecules ; 26(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477499

RESUMO

Bombyx batryticatus, a protein-rich edible insect, is widely used as a traditional medicine in China. Several pharmacological studies have reported the anticancer activity of B. batryticatus extracts; however, the capacity of B. batryticatus extracts as immune potentiators for increasing the efficacy of cancer immunotherapy is still unverified. In the present study, we investigated the immunomodulatory role of B. batryticatus protein-rich extract (BBPE) in bone marrow-derived dendritic cells (BMDCs) and DC vaccine-immunized mice. BBPE-treated BMDCs displayed characteristics of mature immune status, including high expression of surface molecules (CD80, CD86, major histocompatibility complex (MHC)-I, and MHC-II), increased production of proinflammatory cytokines (tumor necrosis factor-α and interleukin-12p70), enhanced antigen-presenting ability, and reduced endocytosis. BBPE-treated BMDCs promoted naive CD4+ and CD8+ T-cell proliferation and activation. Furthermore, BBPE/ovalbumin (OVA)-pulsed DC-immunized mice showed a stronger OVA-specific multifunctional T-cell response in CD4+ and CD8+ T cells and a stronger Th1 antibody response than mice receiving differently treated DCs, which showed the enhanced protective effect against tumor growth in E.G7 tumor-bearing mice. Our data demonstrate that BBPE can be a novel immune potentiator for a DC-based vaccine in anticancer therapy.


Assuntos
Adjuvantes Imunológicos , Apresentação de Antígeno/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/fisiologia , Proteínas de Insetos/metabolismo , Células Th1/imunologia , Extratos de Tecidos/farmacologia , Animais , Bombyx , Proliferação de Células , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
5.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799689

RESUMO

Although our previous study revealed that gamma-irradiated chrysin enhanced anti-inflammatory activity compared to intact chrysin, it remains unclear whether the chrysin derivative, CM1, produced by gamma irradiation, negatively regulates toll-like receptor (TLR) signaling. In this study, we investigated the molecular basis for the downregulation of TLR4 signal transduction by CM1 in macrophages. We initially determined the appropriate concentration of CM1 and found no cellular toxicity below 2 µg/mL. Upon stimulation with lipopolysaccharide (LPS), CM1 modulated LPS-stimulated inflammatory action by suppressing the release of proinflammatory mediators (cytokines TNF-α and IL-6) and nitric oxide (NO) and downregulated the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. Furthermore, CM1 markedly elevated the expression of the TLR negative regulator toll-interacting protein (Tollip) in dose- and time-dependent manners. LPS-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II), proinflammatory cytokines (TNF-α and IL-6), COX-2, and iNOS-mediated NO were inhibited by CM1; these effects were prevented by the knockdown of Tollip expression. Additionally, CM1 did not affect the downregulation of LPS-induced expression of MAPKs and NF-κB signaling in Tollip-downregulated cells. These findings provide insight into effective therapeutic intervention of inflammatory disease by increasing the understanding of the negative regulation of TLR signaling induced by CM1.


Assuntos
Flavonoides/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Flavonoides/metabolismo , Flavonoides/efeitos da radiação , Inflamação/tratamento farmacológico , Interleucina-6 , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa
6.
Biosci Biotechnol Biochem ; 84(5): 1001-1012, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31960754

RESUMO

Crude extracts and phytochemical compounds derived from Annona muricata leaves have been demonstrated to exert neuroprotective effects. However, the neuroprotective effects of Annona muricata leaves-derived polysaccharide extracts (ALPs) have not been investigated. ALP treatment was shown to induce concentration-dependent antioxidant activity in HT22 cells, and to increase cell viability in H2O2-treated HT22 cells. These effects were correlated with a decrease in major components of oxidation, including: Ca2+, ROS, and malondialdehyde (MDA). Mediators of the intracellular response to oxidation, including Bax, cytochrome c, and cleaved caspases-3, -8, -9, MAPKs, and NF-κB, were positively influenced by ALP treatment under conditions of H2O2-mediated oxidative stress. In addition, ALP restored the expression of superoxide dismutase (SOD) and associated signaling pathways (PARP, PI3K/AKT and Nrf2-mediated HO-1/NQO-1) following H2O2 treatment. These results provide new pharmacological evidence that ALP facilitates neuroprotection via prevention of neuronal oxidative stress and promotion of cell survival signaling pathways.Abbreviations: ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonicacid); AD: Alzheimer's disease; ALP: polysaccharide extracts isolated from Annona muricata leaves; ARE: antioxidant response element; DPPH: 1,1-diphenyl-picrylhydrazyl; DCFH-DA: 2',7'-dichlorofluorescin diacetate; ECL: electrochemiluminescence; ERK: extracellular regulated kinase; FBS: Fetal bovine serum; FITC: fluorescein isothiocyanate; FRAP: ferric reducing antioxidant power; HO-1: Heme oxygenase-1; JNK: c-jun N-terminal kinase; MAPKs: mitogen-activated protein kinases; MDA: malondialdehyde; MMP: mitochondrial membrane potential; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide; NQO1: NAD(P)H:quinine oxidoreductase 1, Nrf2: nuclear factor-E2-related factor 2; PD: parkinson's disease; PI3K: phosphatidylinositol-3kinase; PVDF: polyvinylidene difluoride; ROS: reactive oxygen species; SOD: Superoxidedismutase; TPTZ: tripydyltriazine.


Assuntos
Annona/química , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Malondialdeído/análise , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo
7.
Korean J Parasitol ; 58(1): 7-14, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32145722

RESUMO

Toxoplasma gondii is an intracellular protozoan parasite that infects approximately one third of the human popu- lation worldwide. Considering the toxicity and side effects of anti-toxoplasma medications, it is important to develop effec- tive drug alternatives with fewer and less severe off-target effects. In this study, we found that 4-hydroxybenzaldehyde (4- HBA) induced autophagy and the expression of NAD-dependent protein deacetylase sirtuin-1 (SIRT1) in primary murine bone marrow-derived macrophages (BMDMs). Interestingly, treatment of BMDMs with 4-HBA significantly reduced the number of macrophages infected with T. gondii and the proliferation of T. gondii in infected cells. This effect was impaired by pretreating the macrophages with 3-methyladenine or wortmannin (selective autophagy inhibitors) or with sirtinol or EX527 (SIRT1 inhibitors). Moreover, we found that pharmacological inhibition of SIRT1 prevented 4-HBA-mediated expres- sion of LC3-phosphatidylethanolamine conjugate (LC3-II) and the colocalization of T. gondii parasitophorous vacuoles with autophagosomes in BMDMs. These data suggest that 4-HBA promotes antiparasitic host responses by activating SIRT1- mediated autophagy, and 4-HBA might be a promising therapeutic alternative for the treatment of toxoplasmosis.


Assuntos
Autofagia , Benzaldeídos/farmacologia , Macrófagos/fisiologia , Sirtuína 1 , Toxoplasma/crescimento & desenvolvimento , Animais , Células Cultivadas , Depressão Química , Camundongos Endogâmicos C57BL
8.
Cell Physiol Biochem ; 52(5): 1117-1138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30990583

RESUMO

BACKGROUND/AIMS: New therapeutic strategies and the development of treatments against inflammatory bowel disease (IBD) require the initiation of immune tolerance and inhibition of excessive inflammation. Resveratrol, a polyphenolic compound, is a powerful immunosuppressor, but it can lead to apoptotic death of normal cells at high concentrations. When we induced a structural modification of resveratrol by gamma irradiation, we were able to investigate the potential tolerogenic and anti-inflammatory effect of a new radiolysis product (named γ-Res) during dendritic cell (DC) activation/differentiation. METHODS: The potential tolerogenic and anti-inflammatory effect of γ-Res were investigated by cytokine secretion, surface molecule expression, antigen uptake ability, antigen presenting ability, signaling pathway, and mixed lymphocyte reaction (MLR) assay using enzyme-linked immunosorbent assay (ELISA), western blot and flow cytometry. RESULTS: LPS-activated DCs treated with γ-Res exhibited alterations in their mature and functional statuses including a strongly inhibited cytokine production, surface molecule expression, antigen-presenting ability, and activated DC-induced T cell proliferation/activation. In addition, the DCs generated by the γ-Res treatment during DC differentiation induced a decreased surface molecule expression and increased IL-10 production without altering the levels of TNF-α and IL-12p70, thereby promoting the inhibition of T cell proliferation/activation and the induction of regulatory T cells via interaction with DCs in vitro. Furthermore, in the in vivo DSS-induced colitis model, γ-Res treatment conferred protective immunity with a decrease in IFN-γ+CD4+ and IL-17A+CD4+ T cells and imparted protection by reducing the disease activity and histological disease score and increasing the survival rate in dextran sulfate sodium (DSS)-induced colitis in mice. CONCLUSION: Thus, our results suggest that γ-Res may be an excellent candidate for use in IBD treatment.


Assuntos
Anti-Inflamatórios não Esteroides , Diferenciação Celular/efeitos dos fármacos , Colite Ulcerativa , Células Dendríticas/imunologia , Raios gama , Tolerância Imunológica/efeitos dos fármacos , Resveratrol , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Diferenciação Celular/imunologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Células Dendríticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Resveratrol/química , Resveratrol/farmacologia
9.
Biochem Biophys Res Commun ; 518(1): 87-93, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31402120

RESUMO

GLM, a luteolin derivative, shows anti-melanogenic effect via regulation of various signal molecules; however, it is unclear whether it also exerts anti-inflammatory effect. This study investigated the mechanisms of the anti-inflammatory effect of GLM on activated dendritic cells (DCs) to elucidate its therapeutic potential for ulcerative colitis. The anti-inflammatory effect of GLM was firstly investigated based on its effect on DCs maturation and T cells proliferation/activation. GLM treatment downregulated pro-inflammatory cytokine productions, surface molecule expression, and antigen-presenting ability for MHC-II complex in LPS-activated DCs. Importantly, anti-inflammatory effect induced by GLM treatment were independent of MAPK/NF-κB signaling pathways. Furthermore, DCs that were co-treated with LPS and GLM impaired the proliferation and activation of naïve CD4+ T cells. Interestingly, GLM exerted in vivo protective effect in DSS-induced colitis models by decreasing Th1, Th2, and Th17 cells and myeloperoxidase (MPO) levels, as well as restoring body weight, disease activity, and DSS-induced pathology. Based on these results, GLM was shown to be a potential candidate treatment for ulcerative colitis.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Células Dendríticas/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Luteolina/uso terapêutico , Animais , Apresentação de Antígeno/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Colite Ulcerativa/complicações , Citocinas/biossíntese , Células Dendríticas/efeitos dos fármacos , Sulfato de Dextrana , Feminino , Inflamação/complicações , Lipopolissacarídeos , Luteolina/química , Luteolina/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Fator de Transcrição RelA/metabolismo
10.
Cell Physiol Biochem ; 46(5): 2072-2081, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29723847

RESUMO

BACKGROUND/AIMS: Inflammatory bowel disease (IBD) is a condition that involves chronic inflammation in all or part of the digestive tract. Often painful and debilitating, IBD can lead to life-threatening complications and increase the risk for colon cancer. In this study, we investigated the epigallocatechin-3-gallate (EGCG) mediated anti-inflammation response in lipopolysaccharide (LPS)-stimulated human colorectal cells through the negative regulator of Toll-like receptor (TLR) signaling. METHODS: human intestinal epithelial cells (HT-29) were used in all experiments. Cell cytotoxicity and nitric oxide (NO) were evaluated by WST-1 and the Griess reagent. Western blot analysis and ELISA were used to determine inflammatory mediators and 67-kDa laminin receptor (67LR)-mediated Tollip signaling pathways. RESULTS: Treatment of EGCG and LPS did not affect the cytotoxicity in HT-29 cells. LPS treatment dose-dependently increased the pro-inflammatory cytokine, such as interleukin (IL)-8, whereas EGCG significantly reduced the LPS-stimulated IL-8 production. Additionally, EGCG treatment markedly increased the Toll-interacting protein (Tollip) expression, which negatively regulates the TLR signaling in a dose and time-dependent manner. In particular, in the result from an RNA interference-mediated assay, our finding showed that silencing of Tollip resulted in abrogation of the inhibitory action of EGCG on LPS-induced production of pro-inflammatory mediators (inducible nitric oxide synthase-mediated NO/COX2, and IL-8) and activation of MAPKs and NF-κB signaling pathways. Interestingly, we also found that Tollip expression induced by EGCG could be modulated through 67LR expressed on the surface of HT-29 cells. CONCLUSIONS: Our novel finding indicates that 67LR and Tollip signaling activated by EGCG treatment is essential for inhibition of inflammation in human intestinal epithelial cells.


Assuntos
Anti-Inflamatórios/farmacologia , Catequina/análogos & derivados , Mucosa Intestinal/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lipopolissacarídeos/imunologia , Receptores de Laminina/imunologia , Transdução de Sinais/efeitos dos fármacos , Catequina/farmacologia , Células HT29 , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia
11.
Biosci Biotechnol Biochem ; 82(12): 2149-2157, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30227776

RESUMO

Phenolic compounds isolated from pepper (Capsicum annum) have been demonstrated to have neuroprotective effects, whereas the physiological properties of Capsicum annuum var. abbreviatum (CAA) have not been studied. Thus, we investigate the chemical composition and neuroprotective activity of CAA extract (CAAE) in HT22 hippocampus cells against H2O2-induced neurotoxicity. CAAE treatment resulted in a significant protection of H2O2-exposed HT22, this protection ultimately occurred through an inhibition of MDA and ROS levels and an induction of SOD activity. Furthermore, CAAE treatment reduced H202-induced apoptosis though decreasing the expression of pro-apoptotic factors (Bax, cytochrome c, and cleaved caspases-3) while increasing the expression of the anti-apoptotic factors (Bcl-2), as well as the accumulation of nucleus-Nrf2-mediated HO-1 signaling. Interestingly, CAAE has a high concentration of unique phenolic compositions (chlrogenic acid, tangeretin, etc.) than other capsicum annum extracts. Altogether, these findings suggest that CAAE can be a useful natural resource for alleviating neurodegenerative diseases.


Assuntos
Capsicum/química , Hipocampo/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Citocromos c/metabolismo , Heme Oxigenase-1/metabolismo , Hipocampo/citologia , Hipocampo/enzimologia , Hipocampo/metabolismo , Malondialdeído/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Fenóis/análise , Fenóis/isolamento & purificação , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
12.
Biosci Biotechnol Biochem ; 82(8): 1344-1358, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29629628

RESUMO

This study was carried out to evaluate the neuroprotective activity of polysaccharide extracts isolated from Perilla frutescens (PEPF) in H2O2-treated HT22 hippocampus cells. The PEPF treatment was found to increase the anti-oxidant activities of HT22 hippocampus cells. PEPF treatment resulted in a significant protection of HT22 hippocampus cells against H2O2-induced neurotoxicity, this protection ultimately occurred through an inhibition of ROS-mediated intracellular Ca2+ levels leading to MAPKs and NF-κB, as well as the accumulation of PI3K/AKT and Nrf2-mediated HO-1/NQO1 pathways. Furthermore, PEPF not only decreased the expression of Bax, cytochrome c, and cleaved caspases-3, -8, and -9, but also increased the expression of PARP and Bcl-2 in the H2O2-treated HT22 hippocampus cells, which overall contributed to the neuroprotective action. PEPF retains its mitochondrial membrane potential and reduces the elevated levels of sub-G1 phase and apoptotic morphological features induced by H2O2. It also reduces the malondialdehyde levels and enhances the intracellular SOD activity.


Assuntos
Hipocampo/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Perilla frutescens/química , Polissacarídeos/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Caspases/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Fase G1/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/metabolismo , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NF-kappa B/metabolismo , Fármacos Neuroprotetores/isolamento & purificação , Polissacarídeos/isolamento & purificação , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
Bioorg Med Chem ; 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27134118

RESUMO

In this report, we present a rapid and highly efficient method for radioactive iodine labeling of trans-cyclooctene group conjugated biomolecules using inverse-electron-demand Diels-Alder reaction. Radioiodination reaction of the tetrazine structure was carried out using the stannylated precursor 2 to give 125I-labeled azide ([125I]1) with high radiochemical yield (65±8%) and radiochemical purity (>99%). For radiolabeling application of [125I]1, trans-cyclooctene derived cRGD peptide and human serum albumin were prepared. These substrated were reacted with [125I]1 under mild condition to provide the radiolabeled products [125I]6 and [125I]8, respectively, with excellent radiochemical yields. The biodistribution study of [125I]8 in normal ICR mice showed significantly lower thyroid uptake values than that of 125I-labeled human serum albumin prepared by a traditional radiolabeling method. Therefore [125I]8 will be a useful radiolabeled tracer in various molecular imaging and biological studies. Those results clearly demonstrate that [125I]1 will be used as a valuable prosthetic group for radiolabeling of biomolecules.

14.
Biosci Biotechnol Biochem ; 80(8): 1520-30, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27068250

RESUMO

Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-ß in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Diospyros/química , Flavonoides/farmacologia , Lipopolissacarídeos/farmacologia , NF-kappa B/genética , Fator de Transcrição STAT1/genética , Animais , Anti-Inflamatórios não Esteroides/isolamento & purificação , Linhagem Celular , Flavonoides/isolamento & purificação , Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Inflamação/prevenção & controle , Interferon beta/genética , Interferon beta/imunologia , Lipopolissacarídeos/antagonistas & inibidores , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/imunologia , NF-kappa B/imunologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Fosforilação , Fator de Transcrição STAT1/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
15.
J Sci Food Agric ; 96(2): 695-702, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25880631

RESUMO

BACKGROUND: This study was designed to evaluate the antitumor activity of low-molecular-weight ß-glucan (LMBG) produced by gamma irradiation (50 kGy), using in vivo and in vitro models. RESULTS: The results indicate that treatment with LMBG increased the proliferation of murine peritoneal macrophages, and their production of tumor necrosis factor α and nitric oxide, to a greater extent than treatment with high-molecular-weight ß-glucan (HMBG). The activation of peritoneal macrophages by LMBG was mediated by both mitogen-activated protein kinases and nuclear factor-κB signaling. Interestingly, when administered prophylactically, LMBG significantly inhibited tumor growth and lung metastasis in mice injected with B16BL6 melanoma cells compared with the HMBG-treated group. In comparison with HMBG treatment, LMBG treatment also elevated cell proliferation, cytokine (interferon-γ and interleukin-2) production, and CD8(+) T cell populations in splenocytes from tumor-bearing mice. CONCLUSION: These data indicate that LMBG is important in eliciting antitumor activity through a non-specific immune response and may play a major role as a value-added product in the medical industry.


Assuntos
Antineoplásicos/farmacologia , Raios gama , Imunomodulação/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , beta-Glucanas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/biossíntese , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Masculino , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Óxido Nítrico/biossíntese , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/biossíntese , beta-Glucanas/efeitos da radiação
16.
Food Sci Biotechnol ; 33(6): 1459-1466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38585568

RESUMO

In this study, the effect of different moisture levels in extruded plant-based meat on macrophage immunostimulation, and the potential of this meat as a protein source and a solution to environmental and economic challenges associated with conventional meat was investigated. To determine the effects of the extruded plant-based meat, cell viability assay, enzyme-linked immunosorbent assay, flow cytometry, and western blotting were performed. Low-moisture (LMME) and high-moisture meat extracts (HMME) showed higher potential to activate macrophages and regulate cytokine production than raw material extract. Treatment with LMME and HMME resulted in increased expression of CD80, CD86, and MHC class I/II proteins, indicating their potential to activate macrophages. Western blotting suggested that the immune activation observed in a previous study of macrophages was because of the phosphorylation of MAPKs and NF-κB. These findings suggest that extruded plant-based meat can potentially be used as an immunostimulatory food ingredient.

17.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474770

RESUMO

Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.


Assuntos
Flavonoides , Sepse , Choque Séptico , Camundongos , Animais , Sirtuína 1/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Choque Séptico/tratamento farmacológico , Endotoxinas , Citocinas/metabolismo , Sepse/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
18.
Biochem Biophys Res Commun ; 431(4): 698-705, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23353651

RESUMO

Polyphenolic compounds have been regarded as one of the most promising dietary agents for the prevention and treatment of inflammation-related chronic diseases; however, the anti-inflammatory activities of flavonoids, such as quercetin, are not completely characterized, and many features remain to be elucidated. In this study, we showed the molecular basis for the downregulation of TLR4 signal transduction by quercetin. Quercetin markedly elevated the expression of the Toll-interacting protein, a negative regulator of TLR signaling. Lipopolysaccharide-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1ß, IL-6, and IL-12p70) were inhibited by quercetin, and this action was prevented by Toll-interacting protein silencing. In addition, quercetin-treated macrophages inhibited lipopolysaccharide-induced activation of mitogen-activated protein kinases, such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase, and the translocation of nuclear factor-κB and p65 through Toll-interacting protein. Treatment with quercetin resulted in a significant decrease in prostaglandin E2 and cyclooxygenase-2 levels as well as inducible nitric oxide synthase-mediated nitric oxide production induced by lipopolysaccharide. Taken together, these findings represent new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and effective therapeutic intervention for the treatment of inflammatory disease.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Quercetina/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Linhagem Celular , Regulação para Baixo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
19.
Biochem Biophys Res Commun ; 438(1): 122-8, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23872113

RESUMO

Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1ß, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development and progression of many chronic diseases.


Assuntos
Biflavonoides/farmacologia , Catequina/farmacologia , Quinases Associadas a Receptores de Interleucina-1/biossíntese , Macrófagos/metabolismo , Proantocianidinas/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Macrófagos/efeitos dos fármacos , Camundongos
20.
J Med Food ; 26(12): 927-938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064431

RESUMO

Cisplatin, a potent and prominent chemotherapeutic drug, has considerable side effects, including nephrotoxicity, which limits its therapeutic application and efficacy. Therefore, the development of agents that protect normal cells while preserving cisplatin's chemotherapeutic properties is of utmost importance. This study aimed to explore the protective effects of Bombyx batryticatus protein-rich extract (BBPE) against cisplatin-induced nephrotoxicity in a cisplatin-treated mouse model and human embryonic kidney (HEK293) cells. Apoptosis was assessed in HEK293 cells to determine the cytoprotective effects of BBPE and its effects on the generation of cisplatin-induced reactive oxygen species (ROS) and mitochondrial transmembrane potential (MTP) collapse. Although cisplatin induced nephrotoxicity in HEK293 cells, pretreatment with BBPE showed significant protective effects against cisplatin-induced nephrotoxicity by regulating the expression levels of pro- and antiapoptotic proteins. The cytoprotective effects of BBPE were mediated by decreased ROS production and MTP loss in cisplatin-treated HEK293 cells. The in vitro results were confirmed in the cisplatin-treated mouse model. Pretreatment with BBPE protected against cisplatin-induced nephrotoxicity by restoring malondialdehyde, superoxide dismutase, and catalase levels in kidney tissue and blood urea nitrogen and creatinine serum levels. Furthermore, histopathological assessment and terminal dUTP nick end-labeling staining showed that BBPE mitigated cisplatin-induced nephrotoxicity in kidney tissues. Overall, BBPE may act as a potent agent for alleviating cisplatin-induced nephrotoxicity, thereby increasing the safety of cisplatin-based chemotherapy.


Assuntos
Bombyx , Cisplatino , Camundongos , Animais , Humanos , Cisplatino/efeitos adversos , Células HEK293 , Espécies Reativas de Oxigênio/metabolismo , Bombyx/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Rim , Apoptose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa