Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Drugs ; 84(9): 1025-1033, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39001941

RESUMO

Thoracic cancers comprise non-small cell lung cancers (NSCLCs), small cell lung cancers (SCLCs) and malignant pleural mesotheliomas (MPM). Collectively, they account for the highest rate of death from malignancy worldwide. Genomic instability is a universal feature of cancer, which fuels mutations and tumour evolution. Deficiencies in DNA damage response (DDR) genes amplify genomic instability. Homologous recombination deficiency (HRD), resulting from BRCA1/BRCA2 inactivation, is exploited for therapeutic synthetic lethality with poly-ADP ribose polymerase (PARP) inhibitors in breast and ovarian cancers, as well as in prostate and pancreatic cancers. However, DDR deficiency and its therapeutic implications are less well established in thoracic cancers. Emerging evidence suggests that a subset of thoracic cancers may harbour DDR deficiency and may, thus, be effectively targeted with DDR agents. Here, we review the current evidence surrounding DDR in thoracic cancers and discuss the challenges and promise for achieving clinical benefit with such therapeutics.


Assuntos
Dano ao DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Dano ao DNA/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias Torácicas/tratamento farmacológico , Neoplasias Torácicas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Instabilidade Genômica , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Reparo do DNA/efeitos dos fármacos , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma Maligno/genética , Proteína BRCA1/genética , Proteína BRCA1/deficiência , Proteína BRCA2/genética , Proteína BRCA2/deficiência
2.
Nat Commun ; 15(1): 7187, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168966

RESUMO

Malignant mesothelioma is a rare tumour caused by asbestos exposure that originates mainly from the pleural lining or the peritoneum. Treatment options are limited, and the prognosis is dismal. Although immune checkpoint blockade (ICB) can improve survival outcomes, the determinants of responsiveness remain elusive. Here, we report the outcomes of a multi-centre phase II clinical trial (MiST4, NCT03654833) evaluating atezolizumab and bevacizumab (AtzBev) in patients with relapsed mesothelioma. We also use tumour tissue and gut microbiome sequencing, as well as tumour spatial immunophenotyping to identify factors associated with treatment response. MIST4 met its primary endpoint with 50% 12-week disease control, and the treatment was tolerable. Aneuploidy, notably uniparental disomy (UPD), homologous recombination deficiency (HRD), epithelial-mesenchymal transition and inflammation with CD68+ monocytes were identified as tumour-intrinsic resistance factors. The log-ratio of gut-resident microbial genera positively correlated with radiological response to AtzBev and CD8+ T cell infiltration, but was inversely correlated with UPD, HRD and tumour infiltration by CD68+ monocytes. In summary, a model is proposed in which both intrinsic and extrinsic determinants in mesothelioma cooperate to modify the tumour microenvironment and confer clinical sensitivity to AtzBev. Gut microbiota represent a potentially modifiable factor with potential to improve immunotherapy outcomes for individuals with this cancer of unmet need.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno B7-H1 , Bevacizumab , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Bevacizumab/uso terapêutico , Bevacizumab/farmacologia , Masculino , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Anticorpos Monoclonais Humanizados/uso terapêutico , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Pessoa de Meia-Idade , Idoso , Mesotelioma Maligno/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Mesotelioma/imunologia , Mesotelioma/tratamento farmacológico , Mesotelioma/microbiologia , Mesotelioma/patologia , Microambiente Tumoral/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/microbiologia , Resultado do Tratamento
3.
Am Soc Clin Oncol Educ Book ; 43: e389956, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37167572

RESUMO

Most thoracic cancers arise via a series of stepwise somatic alterations driven by a well-defined carcinogen (ie, tobacco or asbestos for lung cancer and mesothelioma, respectively). A small proportion can emerge on a background of pathogenic germline variants (PGVs), which have the property of heritability. In general, PGVs may be initially suspected on the basis of the presence of specific clinical features. Such gene × environment interactions significantly increase the risk of developing lung cancer (1.5- to 3.2-fold). PGVs have been discovered involving the actionable driver oncogene, epidermal growth factor receptor (EGFR), with an EGFR T790M PGV rate of 0.3%-0.9% in the nonsquamous non-small-cell lung cancer subtype. Its appearance during routine somatic DNA sequencing in those patients who have not had a previous tyrosine kinase inhibitor should raise suspicion. In patients with sporadic mesothelioma, BAP1 is the most frequently mutated tumor driver, with a PGV rate between 2.8% and 8%, associated with a favorable prognosis. BAP1 PGVs accelerate mesothelioma tumorigenesis after asbestos exposure in preclinical models and may be partly predicted by clinical criteria. At present, routine germline genetic testing for thoracic cancers is not a standard practice. Expert genetic counseling is, therefore, required for patients who carry a PGV. Ongoing studies aim to better understand the natural history of patients harboring PGVs to underpin future cancer prevention, precise counseling, and cancer management with the goal of improving the quality and length of life.


Assuntos
Amianto , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Receptores ErbB/genética , Mutação , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Inibidores de Proteínas Quinases , Mutação em Linhagem Germinativa , Células Germinativas/metabolismo , Predisposição Genética para Doença
4.
Oncogene ; 42(8): 572-585, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36550359

RESUMO

The tumour suppressor BRCA1-associated protein 1 (BAP1) is the most frequently mutated cancer gene in mesothelioma. Here we report novel functions for BAP1 in mitotic progression highlighting the relationship between BAP1 and control of genome stability in mesothelioma cells with therapeutic implications. Depletion of BAP1 protein induced proteasome-mediated degradation of BRCA1 in mesothelioma cells while loss of BAP1 correlated with BRCA1 loss in mesothelioma patient tumour samples. BAP1 loss also led to mitotic defects that phenocopied the loss of BRCA1 including spindle assembly checkpoint failure, centrosome amplification and chromosome segregation errors. However, loss of BAP1 also led to additional mitotic changes that were not observed upon BRCA1 loss, including an increase in spindle length and enhanced growth of astral microtubules. Intriguingly, these consequences could be explained by loss of expression of the KIF18A and KIF18B kinesin motors that occurred upon depletion of BAP1 but not BRCA1, as spindle and astral microtubule defects were rescued by re-expression of KIF18A and KIF18B, respectively. We therefore propose that BAP1 inactivation causes mitotic defects through BRCA1-dependent and independent mechanisms revealing novel routes by which mesothelioma cells lacking BAP1 may acquire genome instability and exhibit altered responses to microtubule-targeted agents.


Assuntos
Proteína BRCA1 , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Segregação de Cromossomos , Genes Supressores de Tumor , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Microtúbulos/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
5.
BMJ Open ; 13(11): e073120, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993149

RESUMO

BACKGROUND: Malignant mesothelioma is a rapidly lethal cancer that has been increasing at an epidemic rate over the last three decades. Targeted therapies for mesothelioma have been lacking. A previous study called MiST1 (NCT03654833), evaluated the efficacy of Poly (ADP-ribose) polymerase (PARP) inhibition in mesothelioma. This study met its primary endpoint with 15% of patients having durable responses exceeding 1 year. Therefore, there is a need to evaluate PARP inhibitors in relapsed mesothelioma patients, where options are limited. Niraparib is the PARP inhibitor used in NERO. METHODS: NERO is a multicentre, two-arm, open-label UK randomised phase II trial designed to evaluate the efficacy of PARP inhibition in relapsed mesothelioma. 84 patients are being recruited. NERO is not restricted by line of therapy; however, eligible participants must have been treated with an approved platinum based systemic therapy. Participants will be randomised 2:1, stratified according to histology and response to prior platinum-based chemotherapy, to receive either active symptom control (ASC) and niraparib or ASC alone, for up to 24 weeks. Participants will be treated until disease progression, withdrawal, death or development of significant treatment limiting toxicity. Participants randomised to niraparib will receive 200 or 300 mg daily in a 3-weekly cycle. The primary endpoint is progression-free survival, where progression is determined by modified Response Evaluation Criteria in Solid Tumors (mRECIST) or RECIST 1.1; investigator reported progression; or death from any cause, whichever comes first. Secondary endpoints include overall survival, best overall response, 12-week and 24 week disease control, duration of response, treatment compliance and safety/tolerability. If NERO shows niraparib to be safe and biologically effective, it may lead to future late phase randomised controlled trials in relapsed mesothelioma. ETHICS AND DISSEMINATION: The study received ethical approval from London-Hampstead Research Ethics Committee on 06-May-2022 (22/LO/0281). Data from all centres will be analysed together and published as soon as possible. TRIAL REGISTRATION NUMBER: ISCRTN16171129; NCT05455424.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelioma Maligno/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Centros de Cuidados de Saúde Secundários , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Reino Unido , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto
6.
Cancer Res ; 82(24): 4571-4585, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36353752

RESUMO

Myofibroblastic cancer-associated fibroblast (myoCAF)-rich tumors generally contain few T cells and respond poorly to immune-checkpoint blockade. Although myoCAFs are associated with poor outcome in most solid tumors, the molecular mechanisms regulating myoCAF accumulation remain unclear, limiting the potential for therapeutic intervention. Here, we identify ataxia-telangiectasia mutated (ATM) as a central regulator of the myoCAF phenotype. Differentiating myofibroblasts in vitro and myoCAFs cultured ex vivo display activated ATM signaling, and targeting ATM genetically or pharmacologically could suppress and reverse differentiation. ATM activation was regulated by the reactive oxygen species-producing enzyme NOX4, both through DNA damage and increased oxidative stress. Targeting fibroblast ATM in vivo suppressed myoCAF-rich tumor growth, promoted intratumoral CD8 T-cell infiltration, and potentiated the response to anti-PD-1 blockade and antitumor vaccination. This work identifies a novel pathway regulating myoCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance. SIGNIFICANCE: ATM signaling supports the differentiation of myoCAFs to suppress T-cell infiltration and antitumor immunity, supporting the potential clinical use of ATM inhibitors in combination with checkpoint inhibition in myoCAF-rich, immune-cold tumors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Fibroblastos Associados a Câncer , Imunoterapia , Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Diferenciação Celular , Miofibroblastos/metabolismo , Resistencia a Medicamentos Antineoplásicos
7.
J Thorac Oncol ; 17(7): 873-889, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462085

RESUMO

The most common malignancies that develop in carriers of BAP1 germline mutations include diffuse malignant mesothelioma, uveal and cutaneous melanoma, renal cell carcinoma, and less frequently, breast cancer, several types of skin carcinomas, and other tumor types. Mesotheliomas in these patients are significantly less aggressive, and patients require a multidisciplinary approach that involves genetic counseling, medical genetics, pathology, surgical, medical, and radiation oncology expertise. Some BAP1 carriers have asymptomatic mesothelioma that can be followed by close clinical observation without apparent adverse outcomes: they may survive many years without therapy. Others may grow aggressively but very often respond to therapy. Detecting BAP1 germline mutations has, therefore, substantial medical, social, and economic impact. Close monitoring of these patients and their relatives is expected to result in prolonged life expectancy, improved quality of life, and being cost-effective. The co-authors of this paper are those who have published the vast majority of cases of mesothelioma occurring in patients carrying inactivating germline BAP1 mutations and who have studied the families affected by the BAP1 cancer syndrome for many years. This paper reports our experience. It is intended to be a source of information for all physicians who care for patients carrying germline BAP1 mutations. We discuss the clinical presentation, diagnostic and treatment challenges, and our recommendations of how to best care for these patients and their family members, including the potential economic and psychosocial impact.


Assuntos
Neoplasias Pulmonares , Melanoma , Mesotelioma Maligno , Mesotelioma , Neoplasias Cutâneas , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Melanoma/genética , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma/cirurgia , Qualidade de Vida , Neoplasias Cutâneas/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
8.
Cancers (Basel) ; 13(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067960

RESUMO

Malignant pleural mesotheliomas (MPMs) are characterised by their wide variation in natural history, ranging from minimally to highly aggressive, associated with both interpatient and intra-tumour genomic heterogeneity. Recent insights into the nature of this genetic variation, the identification of drivers, and the emergence of novel strategies capable of targeting vulnerabilities that result from the inactivation of key tumour suppressors suggest that new approaches to molecularly strategy therapy for mesothelioma may be feasible.

9.
Nat Commun ; 12(1): 1751, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741915

RESUMO

Malignant Pleural Mesothelioma (MPM) is typically diagnosed 20-50 years after exposure to asbestos and evolves along an unknown evolutionary trajectory. To elucidate this path, we conducted multi-regional exome sequencing of 90 tumour samples from 22 MPMs acquired at surgery. Here we show that exomic intratumour heterogeneity varies widely across the cohort. Phylogenetic tree topology ranges from linear to highly branched, reflecting a steep gradient of genomic instability. Using transfer learning, we detect repeated evolution, resolving 5 clusters that are prognostic, with temporally ordered clonal drivers. BAP1/-3p21 and FBXW7/-chr4 events are always early clonal. In contrast, NF2/-22q events, leading to Hippo pathway inactivation are predominantly late clonal, positively selected, and when subclonal, exhibit parallel evolution indicating an evolutionary constraint. Very late somatic alteration of NF2/22q occurred in one patient 12 years after surgery. Clonal architecture and evolutionary clusters dictate MPM inflammation and immune evasion. These results reveal potentially drugable evolutionary bottlenecking in MPM, and an impact of clonal architecture on shaping the immune landscape, with potential to dictate the clinical response to immune checkpoint inhibition.


Assuntos
Deleção Cromossômica , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mutação , Neoplasias Pleurais/genética , Proteínas Supressoras de Tumor/genética , Células Clonais/metabolismo , Células Clonais/patologia , Análise por Conglomerados , Estudos de Coortes , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Microambiente Tumoral/genética , Proteínas Supressoras de Tumor/classificação , Sequenciamento do Exoma/métodos
10.
Blood Adv ; 2(15): 1869-1881, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30082430

RESUMO

CD40L/interleukin-4 (IL-4) stimulation occurs in vivo in the tumor microenvironment and induces global translation to varying degrees in individuals with chronic lymphocytic leukemia (CLL) in vitro. However, the implications of CD40L/IL-4 for the translation of specific genes is not known. To determine the most highly translationally regulated genes in response to CD40L/IL-4, we carried out ribosome profiling, a next-generation sequencing method. Significant differences in the translational efficiency of DNA damage response genes, specifically ataxia-telangiectasia-mutated kinase (ATM) and the MRE11/RAD50/NBN (MRN) complex, were observed between patients, suggesting different patterns of translational regulation. We confirmed associations between CD40L/IL-4 response and baseline ATM levels, induction of ATM, and phosphorylation of the ATM targets, p53 and H2AX. X-irradiation was used to demonstrate that CD40L/IL-4 stimulation tended to improve DNA damage repair. Baseline ATM levels, independent of the presence of 11q deletion, correlated with overall survival (OS). Overall, we suggest that there are individual differences in translation of specific genes, including ATM, in response to CD40L/IL-4 and that these interpatient differences might be clinically important.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/imunologia , Ligante de CD40/imunologia , Dano ao DNA , Interleucina-4/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Biossíntese de Proteínas/imunologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Ligante de CD40/genética , Feminino , Raios gama , Histonas/genética , Histonas/imunologia , Humanos , Interleucina-4/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/efeitos da radiação , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa