Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
New Phytol ; 237(4): 1164-1178, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336780

RESUMO

Plants produce a wide diversity of metabolites. Yet, our understanding of how shifts in plant metabolites as a response to climate change feedback on ecosystem processes remains scarce. Here, we test to what extent climate warming shifts the seasonality of metabolites produced by Sphagnum mosses, and what are the consequences of these shifts for peatland C uptake. We used a reciprocal transplant experiment along a climate gradient in Europe to simulate climate change. We evaluated the responses of primary and secondary metabolites in five Sphagnum species and related their responses to gross ecosystem productivity (GEP). When transplanted to a warmer climate, Sphagnum species showed consistent responses to warming, with an upregulation of either their primary or secondary metabolite according to seasons. Moreover, these shifts were correlated to changes in GEP, especially in spring and autumn. Our results indicate that the Sphagnum metabolome is very plastic and sensitive to warming. We also show that warming-induced changes in the seasonality of Sphagnum metabolites have consequences on peatland GEP. Our findings demonstrate the capacity for plant metabolic plasticity to impact ecosystem C processes and reveal a further mechanism through which Sphagnum could shape peatland responses to climate change.


Assuntos
Ecossistema , Sphagnopsida , Sphagnopsida/fisiologia , Dióxido de Carbono/metabolismo , Mudança Climática , Transporte Biológico , Plantas/metabolismo
2.
Ann Bot ; 132(3): 443-454, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37647886

RESUMO

BACKGROUND AND AIMS: Phenotypic plasticity allows plants to cope with environmental variability. Plastic responses to the environment have mostly been investigated at the level of individuals (plants) but can also occur within leaves. Yet the latter have been underexplored, as leaves are often treated as functional units with no spatial structure. We investigated the effect of a strong light gradient on plant and leaf traits and examined whether different portions of a leaf show similar or differential responses to light intensity. METHODS: We measured variation in 27 morpho-anatomical and physiological traits of the rosette and leaf portions (i.e. base and apex) of the tank bromeliad Aechmea aquilega (Bromeliaceae) when naturally exposed to a marked gradient of light intensity. KEY RESULTS: The light intensity received by A. aquilega had a strong effect on the structural, biochemical and physiological traits of the entire rosette. Plants exposed to high light intensity were smaller and had wider, shorter, more rigid and more vertical leaves. They also had lower photosynthetic performance and nutrient levels. We found significant differences between the apex and basal portions of the leaf under low-light conditions, and the differences declined or disappeared for most of the traits as light intensity increased (i.e. leaf thickness, adaxial trichome density, abaxial and adaxial trichome surface, and vascular bundle surface and density). CONCLUSIONS: Our results reveal a strong phenotypic plasticity in A. aquilega, particularly in the form of a steep functional gradient within the leaf under low-light conditions. Under high-light conditions, trait values were relatively uniform along the leaf. This study sheds interesting new light on the functional complexity of tank bromeliad leaves, and on the effect of environmental conditions on leaf trait regionalization.


Assuntos
Adaptação Fisiológica , Folhas de Planta , Bromeliaceae , Fotossíntese , Folhas de Planta/fisiologia , Plantas
3.
Environ Microbiol ; 23(11): 6811-6827, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34559454

RESUMO

Phototrophic microbes are widespread in soils, but their contribution to soil carbon (C) uptake remains underexplored in most terrestrial systems, including C-accreting systems such as peatlands. Here, by means of metabarcoding and ecophysiological measurements, we examined how microbial photosynthesis and its biotic (e.g., phototrophic community structure, biomass) and abiotic drivers (e.g., Sphagnum moisture, light intensity) vary across peatland microhabitats. Using a natural gradient of microhabitat conditions from pool to forest, we show that the structure of phototrophic microbial communities shifted from a dominance of eukaryotes in pools to prokaryotes in forests. We identified five groups of co-occurring phototrophic operational taxonomic units with specific environmental preferences across the gradient. Along with such structural changes, we found that microbial C uptake was the highest in the driest and shadiest microhabitats. This study renews and improves current views on phototrophic microbes in peatlands, as the contribution of microbial photosynthesis to peatland C uptake has essentially been studied in wet microhabitats.


Assuntos
Sphagnopsida , Florestas , Fotossíntese , Solo/química , Microbiologia do Solo
4.
J Anim Ecol ; 90(9): 2015-2026, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33232512

RESUMO

While future climate scenarios predict declines in precipitations in many regions of the world, little is known of the mechanisms underlying community resilience to prolonged dry seasons, especially in 'naïve' Neotropical rainforests. Predictions of community resilience to intensifying drought are complicated by the fact that the underlying mechanisms are mediated by species' tolerance and resistance traits, as well as rescue through dispersal from source patches. We examined the contribution of in situ tolerance-resistance and immigration to community resilience, following drought events that ranged from the ambient norm to IPCC scenarios and extreme events. We used rainshelters above rainwater-filled bromeliads of French Guiana to emulate a gradient of drought intensity (from 1 to 3.6 times the current number of consecutive days without rainfall), and we analysed the post-drought dynamics of the taxonomic and functional community structure of aquatic invertebrates to these treatments when immigration is excluded (by netting bromeliads) or permitted (no nets). Drought intensity negatively affected invertebrate community resistance, but had a positive influence on community recovery during the post-drought phase. After droughts of 1 to 1.4 times the current intensities, the overall invertebrate abundance recovered within invertebrate life cycle durations (up to 2 months). Shifts in taxonomic composition were more important after longer droughts, but overall, community composition showed recovery towards baseline states. The non-random patterns of changes in functional community structure indicated that deterministic processes like environmental filtering of traits drive community re-assembly patterns after a drought event. Community resilience mostly relied on in situ tolerance-resistance traits. A rescue effect of immigration after a drought event was weak and mostly apparent under extreme droughts. Under climate change scenarios of drought intensification in Neotropical regions, community and ecosystem resilience could primarily depend on the persistence of suitable habitats and on the resistance traits of species, while metacommunity dynamics could make a minor contribution to ecosystem recovery. Climate change adaptation should thus aim at identifying and preserving local conditions that foster in situ resistance and the buffering effects of habitat features.


Assuntos
Secas , Ecossistema , Animais , Mudança Climática , Emigração e Imigração , Invertebrados
5.
Naturwissenschaften ; 105(7-8): 43, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29951968

RESUMO

Because Tachia guianensis (Gentianaceae) is a "non-specialized myrmecophyte" associated with 37 ant species, we aimed to determine if its presence alters the ant guild associated with sympatric "specialized myrmecophytes" (i.e., plants sheltering a few ant species in hollow structures). The study was conducted in a hilly zone of a neotropical rainforest where two specialized myrmecophytes grow at the bottom of the slopes, another at mid-slope, and a fourth on the hilltops. Tachia guianensis, which occurred everywhere, had its own guild of associated ant species. A network analysis showed that its connections with the four other myrmecophytes were rare and weak, the whole resulting in a highly modular pattern of interactions with one module (i.e., subnetwork) per myrmecophyte. Three ant species parasitized three out of the four specialized myrmecophytes (low nestedness noted), but were not or barely associated with T. guianensis that therefore did not influence the parasitism of specialized myrmecophytes.


Assuntos
Formigas/fisiologia , Ecossistema , Fenômenos Fisiológicos Vegetais , Animais , Especificidade de Hospedeiro , Simbiose
6.
Oecologia ; 187(1): 267-279, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29574580

RESUMO

Future climate scenarios forecast a 10-50% decline in rainfall in Eastern Amazonia. Altered precipitation patterns may change important ecosystem functions like decomposition through either changes in physical and chemical processes or shifts in the activity and/or composition of species. We experimentally manipulated hydroperiods (length of wet:dry cycles) in a tank bromeliad ecosystem to examine impacts on leaf litter decomposition. Gross loss of litter mass over 112 days was greatest in continuously submersed litter, lowest in continuously dry litter, and intermediate over a range of hydroperiods ranging from eight cycles of 7 wet:7 dry days to one cycle of 56 wet:56 dry days. The resilience of litter mass loss to hydroperiod length is due to a shift from biologically assisted decomposition (mostly microbial) at short wet:dry hydroperiods to physicochemical release of dissolved organic matter at longer wet:dry hydroperiods. Biologically assisted decomposition was maximized at wet:dry hydroperiods falling within the range of ambient conditions (12-22 consecutive dry days) but then declined under prolonged wet:dry hydroperiods (28 and 56 dry days. Fungal:bacterial ratios showed a similar pattern as biologically assisted decomposition to hydroperiod length. Our results suggest that microbial communities confer functional resilience to altered hydroperiod in tank bromeliad ecosystems. We predict a substantial decrease in biological activity relevant to decomposition under climate scenarios that increase consecutive dry days by 1.6- to 3.2-fold in our study area, whereas decreased frequency of dry periods will tend to increase the physicochemical component of decomposition.


Assuntos
Secas , Ecossistema , Fungos , Hidrologia , Folhas de Planta
7.
Ecology ; 97(8): 2147-2156, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27859200

RESUMO

Food webs of freshwater ecosystems can be subsidized by allochthonous resources. However, it is still unknown which environmental factors regulate the relative consumption of allochthonous resources in relation to autochthonous resources. Here, we evaluated the importance of allochthonous resources (litterfall) for the aquatic food webs in Neotropical tank bromeliads, a naturally replicated aquatic microcosm. Aquatic invertebrates were sampled in more than 100 bromeliads within either open or shaded habitats and within five geographically distinct sites located in four different countries. Using stable isotope analyses, we determined that allochthonous sources comprised 74% (±17%) of the food resources of aquatic invertebrates. However, the allochthonous contribution to aquatic invertebrates strongly decreased from shaded to open habitats, as light incidence increased in the tanks. The density of detritus in the tanks had no impact on the importance of allochthonous sources to aquatic invertebrates. This overall pattern held for all invertebrates, irrespective of the taxonomic or functional group to which they belonged. We concluded that, over a broad geographic range, aquatic food webs of tank bromeliads are mostly allochthonous-based, but the relative importance of allochthonous subsidies decreases when light incidence favors autochthonous primary production. These results suggest that, for other freshwater systems, some of the between-study variation in the importance of allochthonous subsidies may similarly be driven by the relative availability of autochthonous resources.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Cadeia Alimentar , Invertebrados/fisiologia , Animais , Bromelia , Água Doce
8.
J Anim Ecol ; 85(5): 1147-60, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27120013

RESUMO

Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder-microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder-microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder-microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation.


Assuntos
Organismos Aquáticos/fisiologia , Secas , Cadeia Alimentar , Comportamento Predatório , Chuva , Animais , Bromeliaceae/crescimento & desenvolvimento , Costa Rica , Ecossistema , Guiana Francesa , Porto Rico
9.
Naturwissenschaften ; 102(5-6): 33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26004265

RESUMO

Very large colonies of territorially dominant arboreal ants (TDAAs), whose territories are distributed in a mosaic pattern in the canopies of many tropical rainforests and tree crop plantations, have a generally positive impact on their host trees. We studied the canopy of an old Gabonese rainforest (ca 4.25 ha sampled, corresponding to 206 "large" trees) at a stage just preceding forest maturity (the Caesalpinioideae dominated; the Burseraceae were abundant). The tree crowns sheltered colonies from 13 TDAAs plus a co-dominant species out of the 25 ant species recorded. By mapping the TDAAs' territories and using a null model co-occurrence analysis, we confirmed the existence of an ant mosaic. Thanks to a large sampling set and the use of the self-organizing map algorithm (SOM), we show that the distribution of the trees influences the structure of the ant mosaic, suggesting that each tree taxon attracts certain TDAA species rather than others. The SOM also improved our knowledge of the TDAAs' ecological niches, showing that these ant species are ecologically distinct from each other based on their relationships with their supporting trees. Therefore, TDAAs should not systematically be placed in the same functional group even when they belong to the same genus. We conclude by reiterating that, in addition to the role played by TDAAs' territorial competition, host trees contribute to structuring ant mosaics through multiple factors, including host-plant selection by TDAAs, the age of the trees, the presence of extrafloral nectaries, and the taxa of the associated hemipterans.


Assuntos
Formigas/fisiologia , Territorialidade , Árvores , Animais , Modelos Biológicos , Dinâmica Populacional , Comportamento Social , Clima Tropical
10.
PeerJ ; 12: e17346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737739

RESUMO

Background: Together with the intensification of dry seasons in Neotropical regions, increasing deforestation is expected to exacerbate species extinctions, something that could lead to dramatic shifts in multitrophic communities and ecosystem functions. Recent studies suggest that the effects of habitat loss are greater where precipitation has decreased. Yet, experimental studies of the pure and interactive effects of drought and deforestation at ecosystem level remain scarce. Methods: Here, we used rainshelters and transplantation from rainforest to open areas of natural microcosms (the aquatic ecosystem and microbial-faunal food web found within the rainwater-filled leaves of tank bromeliads) to emulate drought and deforestation in a full factorial experimental design. We analysed the pure and interactive effects of our treatments on functional community structure (including microorganisms, detritivore and predatory invertebrates), and on leaf litter decomposition in tank bromeliad ecosystems. Results: Drought or deforestation alone had a moderate impact on biomass at the various trophic level, but did not eliminate species. However, their interaction synergistically reduced the biomass of all invertebrate functional groups and bacteria. Predators were the most impacted trophic group as they were totally eliminated, while detritivore biomass was reduced by about 95%. Fungal biomass was either unaffected or boosted by our treatments. Decomposition was essentially driven by microbial activity, and did not change across treatments involving deforestation and/or drought. Conclusions: Our results suggest that highly resistant microorganisms such as fungi (plus a few detritivores) maintain key ecosystem functions in the face of drought and habitat change. We conclude that habitat destruction compounds the problems of climate change, that the impacts of the two phenomena on food webs are mutually reinforcing, and that the stability of ecosystem functions depends on the resistance of a core group of organisms. Assuming that taking global action is more challenging than taking local-regional actions, policy-makers should be encouraged to implement environmental action plans that will halt habitat destruction, to dampen any detrimental interactive effect with the impacts of global climate change.


Assuntos
Conservação dos Recursos Naturais , Secas , Ecossistema , Animais , Bromeliaceae , Cadeia Alimentar , Biomassa , Floresta Úmida , Invertebrados/fisiologia
11.
Ann Bot ; 112(5): 919-26, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864002

RESUMO

BACKGROUND AND AIMS: Epiphytism imposes physiological constraints resulting from the lack of access to the nutrient sources available to ground-rooted plants. A conspicuous adaptation in response to that lack is the phytotelm (plant-held waters) of tank-bromeliad species that are often nutrient-rich. Associations with terrestrial invertebrates also result in higher plant nutrient acquisition. Assuming that tank-bromeliads rely on reservoir-assisted nutrition, it was hypothesized that the dual association with mutualistic ants and the phytotelm food web provides greater nutritional benefits to the plant compared with those bromeliads involved in only one of these two associations. METHODS: Quantitative (water volume, amount of fine particulate organic matter, predator/prey ratio, algal density) and qualitative variables (ant-association and photosynthetic pathways) were compared for eight tank- and one tankless-bromeliad morphospecies from French Guiana. An analysis was also made of which of these variables affect nitrogen acquisition (leaf N and δ(15)N). KEY RESULTS: All variables were significantly different between tank-bromeliad species. Leaf N concentrations and leaf δ(15)N were both positively correlated with the presence of mutualistic ants. The amount of fine particulate organic matter and predator/prey ratio had a positive and negative effect on leaf δ(15)N, respectively. Water volume was positively correlated with leaf N concentration whereas algal density was negatively correlated. Finally, the photosynthetic pathway (C3 vs. CAM) was positively correlated with leaf N concentration with a slightly higher N concentration for C3-Tillandsioideae compared with CAM-Bromelioideae. CONCLUSIONS: The study suggests that some of the differences in N nutrition between bromeliad species can be explained by the presence of mutualistic ants. From a nutritional standpoint, it is more advantageous for a bromeliad to use myrmecotrophy via its roots than to use carnivory via its tank. The results highlight a gap in our knowledge of the reciprocal interactions between bromeliads and the various trophic levels (from bacteria to large metazoan predators) that intervene in reservoir-assisted nutrition.


Assuntos
Formigas/fisiologia , Bromeliaceae/fisiologia , Nitrogênio/metabolismo , Água/metabolismo , Animais , Guiana Francesa , Isótopos de Nitrogênio/análise , Fotossíntese , Simbiose
12.
J Environ Manage ; 125: 169-78, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23660537

RESUMO

This paper provides the first critical synopsis of contamination by selected trace elements in the whole Danube Delta (Romania/Ukraine) to: identify general patterns of contamination by trace elements across the Delta, provide recommendations to refine existing monitoring networks and discuss the potential toxicity of trace elements in the whole Delta. Sediment samples were collected between 2004 and 2007 in the three main branches of the Delta (Chilia, Sulina and Sfantu Gheorghe) and in the secondary delta of the Chilia branch. Samples were analyzed for trace elements (Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) and TiO2, Fe2O3, MnO, CaCO3 and total organic carbon. Cluster analysis (CA) and Principal Component Analysis (PCA) showed that levels of Cd, Cu, Pb, and Zn were influenced by anthropogenic activities. At the opposite, concentrations of Cr and Ni largely originated from the weathering of rocks located in the Romanian part of the Danube catchment and naturally rich in these elements. Data analysis using Self-Organizing Maps confirmed the conclusions of CA/PCA and further detected that the contamination tended to be higher in the Chilia and Sulina arms than in the Sfantu Gheorghe arm. The potential ecological risks due to trace element contamination in the Danube Delta could be identified as moderate and localized, provided that the presence of the natural sources of Cr and Ni was properly considered. The available results suggest that monitoring sediment quality at the mouths of Sulina and Sfantu Gheorghe arms is probably enough to get a picture of the sediment quality along their entire lengths. However, a larger network of monitoring points is necessary in the Chilia and secondary Chilia delta to account for the presence of local point sources and for the more complex hydrodynamic of this part of the Danube Delta.


Assuntos
Sedimentos Geológicos/análise , Oligoelementos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 30(5): 11893-11912, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36098918

RESUMO

Rivers are dynamic systems in complex interactions with their surrounding environments. Reliable and fast interpretation of water quality is therefore needed for sustainable river management. Unfortunately, water quality and environmental status interactions have not yet been documented sufficiently in West-Africa. This study explored the spatial-latitudinal and seasonal features of water quality along the Sô River Basin (SRB, West Africa) using self-organizing map (SOM) and principal component analysis. Twenty-two water quality variables were measured in the surface layer at 12 different sampling sites during a twenty-four-month period from July 2016 to June 2018. The results revealed three water quality groups, following an upstream-downstream pollution gradient: (1) upstream and middle reach sites with high dissolved oxygen and Secchi disk depth values, which are more suitable for the aquatic biota; (2) downstream sites with high concentrations of ammonium, biochemical oxygen demand, and heavy metals especially in flood period, reflecting both high organic and heavy metal pollution; and (3) brackish downstream sites characterized by less heavy metal and organic pollutions. No significant variation was observed between seasons. However, the SRB relatively suffered from higher risks of heavy metal contamination and organic pollution in wet seasons. Although hydroclimatic processes affect the water quality, anthropogenic inputs of point and non-point sources were identified and discussed as a more prominent factor contributing to variation in the water quality condition. These results offer insights into the water quality dynamics in river-estuary system as well as potential pollution sources, crucial for defining sanitation, and management measures.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Análise Multivariada , Metais Pesados/análise , África Ocidental , Estações do Ano
14.
Ann Bot ; 109(1): 145-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21984729

RESUMO

BACKGROUND AND AIMS: Determining the sources of variation in floral morphology is crucial to understanding the mechanisms underlying Angiosperm evolution. The selection of floral and reproductive traits is influenced by the plant's abiotic environment, florivores and pollinators. However, evidence that variations in floral traits result from mutualistic interactions with insects other than pollinators is lacking in the published literature and has rarely been investigated. We aimed to determine whether the association with either Camponotus femoratus or Pachycondyla goeldii (both involved in seed dispersal and plant protection) mediates the reproductive traits and allocation of Aechmea mertensii, an obligatory ant-garden tank-bromeliad, differently. METHODS: Floral and reproductive traits were compared between the two A. mertensii ant-gardens. The nitrogen flux from the ants to the bromeliads was investigated through experimental enrichments with stable isotopes ((15)N). KEY RESULTS: Camponotus femoratus-associated bromeliads produced inflorescences up to four times longer than did P. goeldii-associated bromeliads. Also, the numbers of flowers and fruits were close to four times higher, and the number of seeds and their mass per fruit were close to 1·5 times higher in C. femoratus than in P. goeldii-associated bromeliads. Furthermore, the (15)N-enrichment experiment showed that C. femoratus-associated bromeliads received more nitrogen from ants than did P. goeldii-associated bromeliads, with subsequent positive repercussions on floral development. Greater benefits were conferred to A. mertensii by the association with C. femoratus compared with P. goeldii ants. CONCLUSIONS: We show for the first time that mutualistic associations with ants can result in an enhanced reproductive allocation for the bromeliad A. mertensii. Nevertheless, the strength and direction of the selection of floral and fruit traits change based on the ant species and were not related to light exposure. The different activities and ecological preferences of the ants may play a contrasting role in shaping plant evolution and speciation.


Assuntos
Formigas/fisiologia , Bromeliaceae/fisiologia , Animais , Evolução Biológica , Bromeliaceae/anatomia & histologia , Bromeliaceae/genética , Flores/anatomia & histologia , Guiana Francesa , Frutas/crescimento & desenvolvimento , Especiação Genética , Nitrogênio/metabolismo , Polinização , Dispersão de Sementes , Sementes/crescimento & desenvolvimento
15.
ISME Commun ; 2(1): 64, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37938283

RESUMO

Photosynthetic microbes are omnipresent in land and water. While they critically influence primary productivity in aquatic systems, their importance in terrestrial ecosystems remains largely overlooked. In terrestrial systems, photoautotrophs occur in a variety of habitats, such as sub-surface soils, exposed rocks, and bryophytes. Here, we study photosynthetic microbial communities associated with bryophytes from a boreal peatland and a tropical rainforest. We interrogate their contribution to bryophyte C uptake and identify the main drivers of that contribution. We found that photosynthetic microbes take up twice more C in the boreal peatland (~4.4 mg CO2.h-1.m-2) than in the tropical rainforest (~2.4 mg CO2.h-1.m-2), which corresponded to an average contribution of 4% and 2% of the bryophyte C uptake, respectively. Our findings revealed that such patterns were driven by the proportion of photosynthetic protists in the moss microbiomes. Low moss water content and light conditions were not favourable to the development of photosynthetic protists in the tropical rainforest, which indirectly reduced the overall photosynthetic microbial C uptake. Our investigations clearly show that photosynthetic microbes associated with bryophyte effectively contribute to moss C uptake despite species turnover. Terrestrial photosynthetic microbes clearly have the capacity to take up atmospheric C in bryophytes living under various environmental conditions, and therefore potentially support rates of ecosystem-level net C exchanges with the atmosphere.

16.
Sci Rep ; 12(1): 8392, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589855

RESUMO

The predicted increase in the intensity and frequency of drought events associated with global climate change will impose severe hydrological stress to freshwater ecosystems, potentially altering their structure and function. Unlike freshwater communities' direct response to drought, their post-drought recovery capacities remain understudied despite being an essential component driving ecosystem resilience. Here we used tank bromeliad as model ecosystem to emulate droughts of different duration and then assess the recovery capacities of ecosystem structure and function. We followed macroinvertebrate predator and prey biomass to characterize the recovery dynamics of trophic structure (i.e. predator-prey biomass ratio) during the post-drought rewetting phase. We showed that drought significantly affects the trophic structure of macroinvertebrates by reducing the predator-prey biomass ratio. The asynchronous recovery of predator and prey biomass appeared as a critical driver of the post-drought recovery trajectory of trophic structure. Litter decomposition rate, which is an essential ecosystem function, remained stable after drought events, indicating the presence of compensatory effects between detritivores biomass and detritivores feeding activity. We conclude that, in a context of global change, the asynchrony in post-drought recovery of different trophic levels may impact the overall drought resilience of small freshwater ecosystems in a more complex way than expected.


Assuntos
Secas , Ecossistema , Biomassa , Mudança Climática , Cadeia Alimentar
17.
Ecology ; 91(5): 1549-56, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20503886

RESUMO

The main theories explaining the biological diversity of rain forests often confer a limited understanding of the contribution of interspecific interactions to the observed patterns. We show how two-species mutualisms can affect much larger segments of the invertebrate community in tropical rain forests. Aechmea mertensii (Bromeliaceae) is both a phytotelm (plant-held water) and an ant-garden epiphyte. We studied the influence of its associated ant species (Pachycondyla goeldii and Camponotus femoratus) on the physical characteristics of the plants, and, subsequently, on the diversity of the invertebrate communities that inhabit their tanks. As dispersal agents for the bromeliads, P. goeldii and C. femoratus influence the shape and size of the bromeliad by determining the location of the seedling, from exposed to partially shaded areas. By coexisting on a local scale, the two ant species generate a gradient of habitat conditions in terms of available resources (space and food) for aquatic invertebrates, the diversity of the invertebrate communities increasing with greater volumes of water and fine detritus. Two-species mutualisms are widespread in nature, but their influence on the diversity of entire communities remains largely unexplored. Because macroinvertebrates constitute an important part of animal production in all ecosystem types, further investigations should address the functional implications of such indirect effects.


Assuntos
Formigas/fisiologia , Bromeliaceae/fisiologia , Ecossistema , Animais , Simulação por Computador , Modelos Biológicos , Especificidade da Espécie , Água
18.
Naturwissenschaften ; 97(10): 925-34, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20730522

RESUMO

Myrmecophytes offer plant-ants a nesting place in exchange for protection from their enemies, particularly defoliators. These obligate ant-plant mutualisms are common model systems for studying factors that allow horizontally transmitted mutualisms to persist since parasites of ant-myrmecophyte mutualisms exploit the rewards provided by host plants whilst providing no protection in return. In pioneer formations in French Guiana, Azteca alfari and Azteca ovaticeps are known to be mutualists of myrmecophytic Cecropia (Cecropia ants). Here, we show that Azteca andreae, whose colonies build carton nests on myrmecophytic Cecropia, is not a parasite of Azteca-Cecropia mutualisms nor is it a temporary social parasite of A. alfari; it is, however, a temporary social parasite of A. ovaticeps. Contrarily to the two mutualistic Azteca species that are only occasional predators feeding mostly on hemipteran honeydew and food bodies provided by the host trees, A. andreae workers, which also attend hemipterans, do not exploit the food bodies. Rather, they employ an effective hunting technique where the leaf margins are fringed with ambushing workers, waiting for insects to alight. As a result, the host trees' fitness is not affected as A. andreae colonies protect their foliage better than do mutualistic Azteca species resulting in greater fruit production. Yet, contrarily to mutualistic Azteca, when host tree development does not keep pace with colony growth, A. andreae workers forage on surrounding plants; the colonies can even move to a non-Cecropia tree.


Assuntos
Formigas/fisiologia , Cecropia/fisiologia , Cecropia/parasitologia , Hemípteros/fisiologia , Animais , Cecropia/genética , Aptidão Genética , Interações Hospedeiro-Parasita , Folhas de Planta/parasitologia , Comportamento Predatório , Comportamento Social , Árvores/parasitologia
19.
FEMS Microbiol Ecol ; 96(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32175561

RESUMO

Despite the growing number of investigations on microbial succession during the last decade, most of our knowledge on primary succession of bacteria in natural environments comes from conceptual models and/or studies of chronosequences. Successional patterns of litter-degrading bacteria remain poorly documented, especially in undisturbed environments. Here we conducted an experiment with tank bromeliads as natural freshwater microcosms to assess major trends in bacterial succession on two leaf-litter species incubated with or without animal exclusion. We used amplicon sequencing and a co-occurrence network to assess changes in bacterial community structure according to treatments. Alpha-diversity and community complexity displayed the same trends regardless of the treatments, highlighting that primary succession of detrital-bacteria is subject to resource limitation and biological interactions, much like macro-organisms. Shifts in bacterial assemblages along the succession were characterized by an increase in uncharacterized taxa and potential N-fixing bacteria, the latter being involved in positive co-occurrence between taxa. These findings support the hypothesis of interdependence between taxa as a significant niche-based process shaping bacterial communities during the advanced stage of succession.


Assuntos
Bactérias , Ecossistema , Bactérias/genética , Meio Ambiente , Folhas de Planta
20.
Science ; 370(6523)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33335036

RESUMO

Van Klink et al (Reports, 24 April 2020, p. 417) argue for a more nuanced view of insect decline, and of human responsibility for this decline, than previously suggested. However, shortcomings in data selection and methodology raise questions about their conclusions on trends and drivers. We call for more rigorous methodology to be applied in meta-analyses of ecological data.


Assuntos
Água Doce , Insetos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa