Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Neurosci Res ; 96(5): 911-920, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29098710

RESUMO

There are a considerable number of studies concerning the behavioral effects of physical exercise on the epileptic brain; however, the intracellular signaling mechanisms involved remain unclear. We investigated the effects of aerobic exercise on hippocampal levels of brain-derived neurotrophic factor (BDNF), expression of its receptor tropomyosin receptor kinase B (TrkB), and activation of intracellular proteins related to BDNF-TrkB signaling in male Wistar rats with pilocarpine-induced epilepsy. Thirty days after the first spontaneous seizure, rats from the exercise group undertook a 30-day physical exercise program on the treadmill. Thereafter, BDNF levels, expression of TrkB, and activation of intracellular proteins were quantified by enzyme-linked immunosorbent assay, Western blotting, and multiplex assay, respectively. Statistical analyses were conducted using nonparametric tests. Rats with epilepsy presented decreased BDNF levels compared with control rats. BDNF levels increased significantly in the exercise group compared with the epileptic and control groups. Expression of full-length and truncated TrkB was increased in rats with epilepsy, and physical exercise restored its expression to control levels. RAC-alpha serine/threonine-protein kinase, mammalian target of rapamycin, and extracellular signal-regulated kinase activation were reduced in rats with epilepsy, and exercise increased activation compared with control and epilepsy groups. Increased cAMP response element binding protein activation was observed in the exercise group compared with the epilepsy group. Our findings indicate that the beneficial effects of exercise in the epileptic brain can be in part related to alterations in the activation of proteins related to the BDNF-TrkB signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epilepsia/metabolismo , Condicionamento Físico Animal/fisiologia , Receptor trkB/metabolismo , Animais , Epilepsia/induzido quimicamente , Hipocampo/metabolismo , Masculino , Ratos , Ratos Wistar , Convulsões/metabolismo , Transdução de Sinais
2.
Hippocampus ; 27(8): 899-905, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28569408

RESUMO

Aging is often accompanied by cognitive decline, memory impairment, and an increased susceptibility to neurodegenerative disorders. Although the physiological processes of aging are not fully understood, these age-related changes have been interpreted by means of various cellular and molecular theories. Among these theories, alterations in the intracellular signaling pathways associated with cell growth, proliferation, and survival have been highlighted. Based on these observations and on recent evidence showing the beneficial effects of exercise on cognitive function in the elderly, we investigated the cell signaling pathways in the hippocampal formation of middle-aged rats (18 months old) submitted to treadmill exercise over 10 days. To do this, we evaluated the hippocampal activation of intracellular signaling proteins linked to cell growth, proliferation, and survival, such as Akt, mTOR, p70S6K, ERK, CREB, and p38. We also explored the cognitive performance (inhibitory avoidance) of middle-aged rats. It was found that physical exercise reduces ERK and p38 activation in the hippocampal formation of aged rats, when compared to the control group. The hippocampal activation and expression of Akt, mTOR, p70S6K, and CREB were not statistically different between the groups. It was also observed that aged rats from the exercise group exhibited better cognitive performance in the inhibitory avoidance task (aversive memory) than aged rats from the control group. Our results indicate that physical exercise reduces intracellular signaling pathways linked to inflammation and cell death (i.e., ERK and p38) and improves memory in middle-aged rats.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Hipocampo/enzimologia , Memória/fisiologia , Condicionamento Físico Animal/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Cognição/fisiologia , Inibição Psicológica , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
3.
Neurochem Res ; 42(4): 1230-1239, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28078614

RESUMO

Epilepsy is a disease characterized by recurrent, unprovoked seizures. Cognitive impairment is an important comorbidity of chronic epilepsy. Human and animal model studies of epilepsy have shown that aerobic exercise induces beneficial structural and functional changes and reduces the number of seizures. However, little is yet understood about the effects of resistance exercise on epilepsy. We evaluated the effects of a resistance exercise program on the number of seizures, long-term memory and expression/activation of signaling proteins in rats with epilepsy. The number of seizures was quantified by video-monitoring and long-term memory was assessed by an inhibitory avoidance test. Using western blotting, multiplex and enzyme-linked immunosorbent assays, we determined the effects of a 4-week resistance exercise program on IGF-1 and BDNF levels and ERK, CREB, mTOR activation in the hippocampus of rats with epilepsy. Rats with epilepsy submitted to resistance exercise showed a decrease in the number of seizures compared to non-exercised epileptic rats. Memory deficits were attenuated by resistance exercise. Rats with epilepsy showed an increase in IGF-1 levels which were restored to control levels by resistance exercise. BDNF levels and ERK and mTOR activation were decreased in rats with epilepsy and resistance exercise restored these to control levels. In conclusion, resistance exercise reduced seizure occurrence and mitigated memory deficits in rats with epilepsy. These resistance exercise-induced beneficial effects can be related to changes in IGF-1 and BDNF levels and its signaling protein activation. Our findings indicate that the resistance exercise might be included as complementary therapeutic strategy for epilepsy treatment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Condicionamento Físico Animal/fisiologia , Convulsões/metabolismo , Convulsões/prevenção & controle , Animais , Aprendizagem da Esquiva , Epilepsia/metabolismo , Epilepsia/prevenção & controle , Masculino , Ratos , Treinamento Resistido/métodos
4.
Am J Primatol ; 77(4): 449-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25472893

RESUMO

New World primates play an important role in biomedical research. However, the literature still lacks information on many structural features of the brain in these species, particularly structures of the hippocampal formation that are related to long-term memory storage. This study was designed to provide information, for the first time, about the distribution and number of neurons expressing parvalbumin-immunoreactivity (PV-I) in the subregions of the hippocampal formation in Cebus apella, a New World primate species commonly used in biomedical research. Our results revealed that for several morphometric variables, PV-I cells differ significantly among the subregions CA1, CA2, CA3, and the hilus. Based upon our findings and those of other studies, we hypothesize that the proportional increase from monkeys to humans in PV-I cell density within CA1 is a factor contributing to the evolution of increased memory formation and storage.


Assuntos
Cebus/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Animais , Cebus/anatomia & histologia , Feminino , Hipocampo/anatomia & histologia , Hipocampo/citologia , Imuno-Histoquímica , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Neurônios/citologia
5.
Dev Neurosci ; 33(6): 469-78, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912094

RESUMO

Malnutrition during the earliest stages of life may result in innumerable brain problems. Moreover, this condition could increase the chances of developing neurological diseases, such as epilepsy. We analyzed the effects of early-life malnutrition on susceptibility to epileptic seizures induced by the pilocarpine model of epilepsy. Wistar rat pups were kept on a starvation regimen from day 1 to day 21 after birth. At day 60, 16 animals (8 = well-nourished; 8 = malnourished) were exposed to the pilocarpine experimental model of epilepsy. Age-matched well-nourished (n = 8) and malnourished (n = 8) rats were used as controls. Animals were video-monitored over 9 weeks. The following behavioral parameters were evaluated: first seizure threshold (acute period of the pilocarpine model); status epilepticus (SE) latency; first spontaneous seizure latency (silent period), and spontaneous seizure frequency during the chronic phase. The cell and mossy fiber sprouting (MFS) density were evaluated in the hippocampal formation. Our results showed that the malnourished animals required a lower pilocarpine dose in order to develop SE (200 mg/kg), lower latency to reach SE, less time for the first spontaneous seizure and higher seizure frequency, when compared to well-nourished pilocarpine rats. Histopathological findings revealed a significant cell density reduction in the CA1 region and intense MFS among the malnourished animals. Our data indicate that early malnutrition greatly influences susceptibility to seizures and behavioral manifestations in adult life. These findings suggest that malnutrition in infancy reduces the threshold for epilepsy and promotes alterations in the brain that persist into adult life.


Assuntos
Epilepsia do Lobo Temporal/etiologia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Desnutrição/complicações , Desnutrição/patologia , Animais , Animais Recém-Nascidos , Convulsivantes/toxicidade , Modelos Animais de Doenças , Humanos , Transtornos da Nutrição do Lactente/complicações , Transtornos da Nutrição do Lactente/patologia , Recém-Nascido , Fibras Musgosas Hipocampais/patologia , Pilocarpina/toxicidade , Ratos , Ratos Wistar
6.
Epilepsy Behav ; 19(1): 20-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20708978

RESUMO

We investigated the effect of epileptic seizures during pregnancy on hippocampal expression of calcium-binding proteins in the offspring. Female Wistar rats were submitted to the pilocarpine model and mated during the chronic period. Seizure frequency was monitored over the entire pregnancy. Pups were perfused at postnatal days 6 and 13, and the brains processed for Nissl staining and immunohistochemistry for NeuN, calbindin, calretinin, and parvalbumin. Number of stained cells in the hippocampus was estimated through stereological methods. Our results showed a decrease in epileptic seizure frequency during pregnancy. No differences were observed in NeuN-positive, CR-positive cells, and Nissl-stained hippocampal neurons between the groups. However, there was a significant decrease in calbindin-positive cells (P=0.005) and a significant increase in parvalbumin-positive cells (P=0.02) in the experimental group when compared with the control group. These results suggest that seizures during pregnancy affect the development of specific hippocampal interneurons of the offspring.


Assuntos
Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Interneurônios/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Convulsões/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células/métodos , Modelos Animais de Doenças , Feminino , Masculino , Fosfopiruvato Hidratase/metabolismo , Pilocarpina , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Wistar , Convulsões/induzido quimicamente
7.
Sci Rep ; 9(1): 9973, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292491

RESUMO

EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.


Assuntos
Antineoplásicos/farmacologia , Ependimoma/tratamento farmacológico , Proteínas e Peptídeos Salivares/farmacologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Proteínas de Artrópodes , Criança , Pré-Escolar , Feminino , Células-Tronco Fetais/citologia , Células-Tronco Fetais/metabolismo , Humanos , Masculino , Ratos Wistar , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Cell Transplant ; 28(9-10): 1306-1320, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31161782

RESUMO

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia-reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.


Assuntos
Líquido Amniótico/metabolismo , Comportamento Animal , Isquemia Encefálica , Transplante de Células-Tronco , Células-Tronco/metabolismo , Acidente Vascular Cerebral , Adulto , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Gravidez , Ratos , Ratos Wistar , Células-Tronco/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia
9.
J Neurosurg ; 130(4): 1210-1223, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29882701

RESUMO

OBJECTIVE: The objective of this study was to describe a new experimental model of hemispherotomy performed on laboratory animals. METHODS: Twenty-six male young adult Wistar rats were distributed into two groups (surgery and control). The nonfluorescent anterograde neurotracer biotinylated dextran amine (BDA; 10,000 MW) was microinjected into the motor cortex area (M1) according to The Rat Brain in Stereotaxic Coordinates atlas to identify pathways and fibers disconnected after the experimental hemispherectomy. SPECT tomographic images of 99mTc hexamethylpropyleneamine oxime were obtained to verify perfusion in functioning areas of the disconnected and intact brain. A reproducible and validated surgical procedure is described in detail, including exact measurements and anatomical relationships. An additional 30 rodents (n = 10 rats per group) were divided into naïve, sham, and hemispherotomy groups and underwent the rotarod test. RESULTS: Cortico-cortical neural pathways were identified crossing the midline and contacting neuronal perikarya in the contralateral brain hemisphere in controls, but not in animals undergoing hemispherotomy. There was an absence of perfusion in the left side of the brain of the animals undergoing hemispherotomy. Motor performance was significantly affected by brain injuries, increasing the number of attempts to maintain balance on the moving cylinder in the rotarod test at 10 and 30 days after the hemispherotomy, with a tendency to minimize the motor performance deficit over time. CONCLUSIONS: The present findings show that the technique reproduced neural disconnection with minimal resection of brain parenchyma in young adult rats, thereby duplicating the hemispherotomy procedures in human patients.

10.
Stem Cell Res Ther ; 9(1): 310, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413179

RESUMO

BACKGROUND: Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. METHODS/RESULTS: We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. CONCLUSIONS: Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/patologia , Tropismo , Animais , Neoplasias Encefálicas/ultraestrutura , Carcinogênese/metabolismo , Carcinogênese/patologia , Ensaios de Migração Celular , Proliferação de Células , Separação Celular , Quimiocinas/metabolismo , Glioblastoma/ultraestrutura , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/ultraestrutura , Modelos Biológicos , Células-Tronco Neoplásicas/ultraestrutura , Pontos Quânticos/metabolismo , Ratos Wistar , Receptores de Quimiocinas/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas
11.
Oncotarget ; 9(31): 21731-21743, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29774098

RESUMO

BACKGROUND: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. RESULTS: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. CONCLUSIONS: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. METHODS: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

12.
Neuroscience ; 361: 108-115, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28802917

RESUMO

Better cognitive performance and greater cortical and hippocampal volume have been observed in individuals who undertook aerobic exercise during childhood and adolescence. One possible explanation for these beneficial effects is that juvenile physical exercise enables better neural development and hence more cells and neuronal circuitries. It is probable that such effects occur through intracellular signaling proteins associated with cell growth, proliferation and survival. Based on this information, we evaluated the number of neuronal and non-neuronal cells using isotropic fractionation and the expression and activation of intracellular proteins (ERK, CREB, Akt, mTOR and p70S6K) in the cerebral cortex and hippocampal formation of the rats submitted to a physical exercise program on a treadmill during adolescence. Results showed that physical exercise increases the number of neuronal and non-neuronal cortical cells and hippocampal neuronal cells in adolescent rats. Moreover, mTOR overexpression was found in the cortical region of exercised adolescent rats. These findings indicate a significant cellular proliferative effect of aerobic exercise on the cerebral cortex in postnatal development.


Assuntos
Córtex Cerebral/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Envelhecimento , Animais , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Ratos Wistar , Transdução de Sinais/fisiologia
13.
PLoS One ; 11(1): e0147200, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26771675

RESUMO

Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task). Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation) and associative (spatial learning) mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning) and increases BDNF levels and cell numbers in the hippocampal formation of offspring.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar
14.
Oncotarget ; 7(26): 40546-40557, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27244897

RESUMO

Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/citologia , Adipócitos/citologia , Animais , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Sangue Fetal/citologia , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/citologia , Microesferas , Ratos , Ratos Wistar
15.
Einstein (Sao Paulo) ; 14(3): 408-414, 2016.
Artigo em Inglês, Português | MEDLINE | ID: mdl-27759832

RESUMO

OBJECTIVE:: To present the result of upgrading a clinical gamma-camera to be used to obtain in vivo tomographic images of small animal organs, and its application to register cardiac, renal and neurological images. METHODS:: An updated version of the miniSPECT upgrading device was built, which is composed of mechanical, electronic and software subsystems. The device was attached to a Discovery VH (General Electric Healthcare) gamma-camera, which was retired from the clinical service and installed at the Centro de Imagem Pré-Clínica of the Hospital Israelita Albert Einstein. The combined system was characterized, determining operational parameters, such as spatial resolution, magnification, maximum acceptable target size, number of projections, and acquisition and reconstruction times. RESULTS:: Images were obtained with 0.5mm spatial resolution, with acquisition and reconstruction times between 30 and 45 minutes, using iterative reconstruction with 10 to 20 iterations and 4 projection subsets. The system was validated acquiring in vivo tomographic images of the heart, kidneys and brain of normal animals (mice and adult rats), using the radiopharmaceuticals technetium-labeled hexakis-2-methoxy-isobutyl isonitrile (99mTc-Sestamibi), technetium-labeled dimercaptosuccinic acid (99mTc-DMSA) and technetium-labeled hexamethyl propyleneamine oxime (99mTc-HMPAO). CONCLUSION:: This kind of application, which consists in the adaptation for an alternative objective of already existing instrumentation, resulted in a low-cost infrastructure option, allowing to carry out large scale in vivo studies with enhanced quality in several areas, such as neurology, nephrology, cardiology, among others. OBJETIVO:: Apresentar o resultado da adaptação de uma gama câmara clínica para uso dedicado na obtenção de imagens tomográficas in vivo de órgãos de pequenos animais de experimentação, e de sua aplicação na obtenção de imagens cardíacas, renais e neurológicas. MÉTODOS:: Foi construída uma versão atualizada do dispositivo de adaptação miniSPECT, composto por três subsistemas: mecânico, eletrônico e de software. O dispositivo foi montado em uma câmara Discovery VH da General Electric Healthcare, retirada do serviço clínico e instalada no Centro de Imagem Pré-Clínica do Hospital Israelita Albert Einstein. O sistema combinado foi caracterizado, determinando parâmetros de funcionamento como resolução espacial, magnificação, limites de tamanho dos alvos de estudo, número de projeções, tempo de registro e tempo de reconstrução das imagens tomográficas. RESULTADOS:: Foram obtidas imagens com resolução espacial de até 0,5mm, com tempos de registro e reconstrução de 30 a 45 minutos, utilizando reconstrução iterativa com 10 a 20 iterações e 4 subconjuntos de projeções. O sistema foi validado obtendo imagens tomográficas in vivo do coração, dos rins e do cérebro de animais normais (camundongos e ratos adultos), utilizando os radiofármacos hexaquis-2-metoxi-isobutil-isonitrila marcado com 99mTc (Sestamibi-99mTc), ácido dimercaptosuccínico marcado com 99mTc (DMSA-99mTc) e hexametil-propileno-amina-oxima marcada com 99mTc (HMPAO-99mTc). CONCLUSÃO:: Este tipo de aplicação, que consiste na adaptação para um objetivo alternativo de instrumentação já existente, constituiu-se em uma opção de infraestrutura de baixo custo, que permite realizar estudos in vivo em larga escala, com qualidade aprimorada, em áreas diversas, como neurologia, nefrologia, cardiologia, entre outras.


Assuntos
Imagem Molecular/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Pesquisa Translacional Biomédica/instrumentação , Animais , Encéfalo/diagnóstico por imagem , Coração/anatomia & histologia , Coração/diagnóstico por imagem , Rim/diagnóstico por imagem , Masculino , Camundongos , Modelos Animais , Imagem Molecular/métodos , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único/métodos
16.
Cell Transplant. ; 28(9-10): 1306–1320, 2019.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17239

RESUMO

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia–reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.

17.
Sci. Rep. ; 9(9973)2019.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib16121

RESUMO

EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.

18.
Arq Neuropsiquiatr ; 61(3B): 738-45, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14595475

RESUMO

Oxidative stress causes metabolic and structural abnormalities during reperfusion. In an animal model of electrophysiological evaluation of cerebral ischemia-reperfusion, alpha-lipoic acid effect on the oxidative stress was studied by mean absolute amplitude of EEG spectra evaluation. The left carotideal infusion of 3.03 mM alpha-lipoic acid in Wistar rats after cerebral ischemia and reperfusion caused initial reduction and partial final recuperation of the various EEG spectral frequency mean absolute amplitudes (p<0.05). The left intracarotideal infusion of 6.06 mM alpha-lipoic acid significantly reverted the induced depression of mean absolute amplitude of theta and delta spectra. Nevertheless there was an increasing pattern of ischemia demonstrated by mean absolute amplitude depression of almost all EEG spectra with 60.6 mM alpha-lipoic acid infusion. These observations suggest that, depending on the administered concentration, alpha-lipoic acid may act in a dual way, protecting from ischemia at lower concentrations and worsening this process at higher doses.


Assuntos
Antioxidantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Eletroencefalografia , Estresse Oxidativo/efeitos dos fármacos , Ácido Tióctico/farmacologia , Animais , Antioxidantes/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Infusões Intra-Arteriais , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/fisiopatologia , Ácido Tióctico/administração & dosagem
19.
Neurosci Lett ; 561: 46-51, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24373985

RESUMO

Long-term structural and functional changes in the hippocampus have been identified as the primary physiopathological basis for temporal lobe epilepsy. These changes include reactive gliosis and granule cell axonal sprouting within the dentate gyrus. The intimate mechanisms of these changes are beginning to be revealed. Here, we show the possibility of using laser capture microdissection (LCM) to isolate the dentate granular cell layer of Wistar rats submitted to the pilocarpine model of epilepsy. Using two-dimensional gel electrophoresis (2-D PAGE) and mass spectrometry for laser-captured cells, we identified molecular events that could be altered as part of the epileptic pathogenic process. According to our results, eight proteins related to energy metabolism were differentially expressed between both the control and pilocarpine-treated animals. These results provide, for the first time, new molecular insights into the altered protein profile of the epileptogenic dentate gyrus and can contribute to a better understanding of the phenomena involved in the genesis and maintenance of the epileptic state.


Assuntos
Metabolismo Energético , Epilepsia/metabolismo , Hipocampo/metabolismo , Proteínas/metabolismo , Animais , Epilepsia/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Masculino , Pilocarpina , Proteoma/metabolismo , Ratos Wistar
20.
Stem Cell Res. Ther. ; 9: 310, 2018.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15671

RESUMO

Background Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. Methods/results We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. Conclusions Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa