Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 18(1): 1, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407654

RESUMO

BACKGROUND: Nanotoxicology is an increasingly relevant field and sound paradigms on how inhaled nanoparticles (NPs) interact with organs at the cellular level, causing harmful conditions, have yet to be established. This is particularly true in the case of the cardiovascular system, where experimental and clinical evidence shows morphological and functional damage associated with NP exposure. Giving the increasing interest on cobalt oxide (Co3O4) NPs applications in industrial and bio-medical fields, a detailed knowledge of the involved toxicological effects is required, in view of assessing health risk for subjects/workers daily exposed to nanomaterials. Specifically, it is of interest to evaluate whether NPs enter cardiac cells and interact with cell function. We addressed this issue by investigating the effect of acute exposure to Co3O4-NPs on excitation-contraction coupling in freshly isolated rat ventricular myocytes. RESULTS: Patch clamp analysis showed instability of resting membrane potential, decrease in membrane electrical capacitance, and dose-dependent decrease in action potential duration in cardiomyocytes acutely exposed to Co3O4-NPs. Motion detection and intracellular calcium fluorescence highlighted a parallel impairment of cell contractility in comparison with controls. Specifically, NP-treated cardiomyocytes exhibited a dose-dependent decrease in the fraction of shortening and in the maximal rate of shortening and re-lengthening, as well as a less efficient cytosolic calcium clearing and an increased tendency to develop spontaneous twitches. In addition, treatment with Co3O4-NPs strongly increased ROS accumulation and induced nuclear DNA damage in a dose dependent manner. Finally, transmission electron microscopy analysis demonstrated that acute exposure did lead to cellular internalization of NPs. CONCLUSIONS: Taken together, our observations indicate that Co3O4-NPs alter cardiomyocyte electromechanical efficiency and intracellular calcium handling, and induce ROS production resulting in oxidative stress that can be related to DNA damage and adverse effects on cardiomyocyte functionality.


Assuntos
Cobalto/toxicidade , Miócitos Cardíacos , Nanopartículas , Óxidos/toxicidade , Animais , Masculino , Nanopartículas/toxicidade , Estresse Oxidativo , Ratos , Ratos Wistar
2.
Europace ; 21(10): 1594-1602, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31419289

RESUMO

AIMS: This computational study refines our recently published pacing protocol to measure short-term memory (STM) of cardiac action potential (AP), and apply it to five numerical models of human ventricular AP. METHODS AND RESULTS: Several formulations of electrical restitution (ER) have been provided over the years, including standard, beat-to-beat, dynamic, steady-state, which make it difficult to compare results from different studies. We discuss here the notion of dynamic ER (dER) by relating it to its steady-state counterpart, and propose a pacing protocol based on dER to measure STM under periodically varying pacing cycle length (CL). Under high and highly variable-pacing rate, all models develop STM, which can be measured over the entire sequence by means of dER. Short-term memory can also be measured on a beat-to-beat basis by estimating action potential duration (APD) adaptation after clamping CL constant. We visualize STM as a phase shift between action potential (AP) parameters over consecutive cycles of CL oscillations, and show that delay between CL and APD oscillation is nearly constant (around 92 ms) in the five models, despite variability in their intrinsic AP properties. CONCLUSION: dER, as we define it and together with other approaches described in the study, provides an univocal way to measure STM under extreme cardiac pacing conditions. Given the relevance of AP memory for repolarization dynamics and stability, STM should be considered, among other usual biomarkers, to validate and tune cardiac AP models. The possibility of extending the method to in vivo cellular and whole organ models can also be profitably explored.


Assuntos
Arritmias Cardíacas/fisiopatologia , Eletrocardiografia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/fisiologia , Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares , Potenciais de Ação/fisiologia , Adaptação Fisiológica , Arritmias Cardíacas/metabolismo , Estimulação Cardíaca Artificial , Humanos
3.
Europace ; 16(5): 774-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24798968

RESUMO

AIMS: To adopt a novel three-dimensional (3D) representation of cardiac action potential (AP) to compactly visualize dynamical properties of human cellular ventricular repolarization. METHODS AND RESULTS: We have recently established a novel 3D representation of cardiac AP, which is based on the iterative measurement of instantaneous ion current-voltage profiles during the course of an AP. Such an approach has been originally developed on real patch-clamped ventricular cells, and subsequently improved in silico on several cardiac ventricular AP models of different mammals, and on models of different AP types of the human heart. We apply it here on two different models of human ventricular AP, and show that it compactly provides further insights into repolarization dynamics. The 3D representation of the AP includes equilibrium points during repolarization, and can be screened in terms of what we have shown to be a region, during late repolarization, when membrane conductance becomes negative and repolarization therefore auto-regenerative. We have called this time window auto-regenerative-repolarization-phase (ARRP). CONCLUSION: In addition to previous findings obtained through the same procedure, we show here that 3D current-voltage-time representations of human ventricular AP allow compact visualization of dynamical properties, which are relevant for the physiology and pathology of ventricular repolarization. In particular, we suggest that the volume under the current surface corresponding to the ARRP might be used as a predictor of safety of repolarization, in single cells and during AP conduction in cell pairs.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador , Função Ventricular/fisiologia , Humanos , Modelos Cardiovasculares
4.
Part Fibre Toxicol ; 11: 63, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25487314

RESUMO

BACKGROUND: In light of recent developments in nanotechnologies, interest is growing to better comprehend the interaction of nanoparticles with body tissues, in particular within the cardiovascular system. Attention has recently focused on the link between environmental pollution and cardiovascular diseases. Nanoparticles <50 nm in size are known to pass the alveolar-pulmonary barrier, enter into bloodstream and induce inflammation, but the direct pathogenic mechanisms still need to be evaluated. We thus focused our attention on titanium dioxide (TiO2) nanoparticles, the most diffuse nanomaterial in polluted environments and one generally considered inert for the human body. METHODS: We conducted functional studies on isolated adult rat cardiomyocytes exposed acutely in vitro to TiO2 and on healthy rats administered a single dose of 2 mg/Kg TiO2 NPs via the trachea. Transmission electron microscopy was used to verify the actual presence of TiO2 nanoparticles within cardiac tissue, toxicological assays were used to assess lipid peroxidation and DNA tissue damage, and an in silico method was used to model the effect on action potential. RESULTS: Ventricular myocytes exposed in vitro to TiO2 had significantly reduced action potential duration, impairment of sarcomere shortening and decreased stability of resting membrane potential. In vivo, a single intra-tracheal administration of saline solution containing TiO2 nanoparticles increased cardiac conduction velocity and tissue excitability, resulting in an enhanced propensity for inducible arrhythmias. Computational modeling of ventricular action potential indicated that a membrane leakage could account for the nanoparticle-induced effects measured on real cardiomyocytes. CONCLUSIONS: Acute exposure to TiO2 nanoparticles acutely alters cardiac excitability and increases the likelihood of arrhythmic events.


Assuntos
Poluentes Atmosféricos/toxicidade , Arritmias Cardíacas/induzido quimicamente , Ventrículos do Coração/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/fisiopatologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Simulação por Computador , Dano ao DNA , Acoplamento Excitação-Contração/efeitos dos fármacos , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/citologia , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/ultraestrutura , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/administração & dosagem , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Ratos Wistar , Titânio/administração & dosagem , Testes de Toxicidade Aguda
5.
Biomed Res Int ; 2015: 496418, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26229960

RESUMO

Initiation and maintenance of atrial fibrillation (AF) is often associated with pharmacologically or pathologically induced bradycardic states. Even drugs specifically developed in order to counteract cardiac arrhythmias often combine their action with bradycardia and, in turn, with development of AF, via still largely unknown mechanisms. This study aims to simulate action potential (AP) conduction between sinoatrial node (SAN) and atrial cells, either arranged in cell pairs or in a one-dimensional strand, where the relative amount of SAN membrane is made varying, in turn, with junctional resistance. The source-sink relationship between the two membrane types is studied in control conditions and under different simulated chronotropic interventions, in order to define a safety factor for pacemaker-to-atrial AP conduction (SASF) for each treatment. Whereas antiarrhythmic-like interventions which involve downregulation of calcium channels or of calcium handling decrease SASF, the simulation of Ivabradine administration does so to a lesser extent. Particularly interesting is the increase of SASF observed when downregulation G Kr, which simulates the administration of class III antiarrhythmic agents and is likely sustained by an increase in I CaL. Also, the increase in SASF is accompanied by a decreased conduction delay and a better entrainment of repolarization, which is significant to anti-AF strategies.


Assuntos
Fibrilação Atrial/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Modelos Cardiovasculares , Nó Sinoatrial/fisiopatologia , Potenciais de Ação , Animais , Simulação por Computador , Canais Iônicos/metabolismo , Coelhos
6.
PLoS One ; 9(6): e100242, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24940609

RESUMO

The heartbeat arises rhythmically in the sino-atrial node (SAN) and then spreads regularly throughout the heart. The molecular mechanism underlying SAN rhythm has been attributed by recent studies to the interplay between two clocks, one involving the hyperpolarization activated cation current If (the membrane clock), and the second attributable to activation of the electrogenic NaCa exchanger by spontaneous sarcoplasmic releases of calcium (the calcium clock). Both mechanisms contain, in principle, sources of beat-to-beat cycle length variability, which can determine the intrinsic variability of SAN firing and, in turn, contribute to the heart rate variability. In this work we have recorded long sequences of action potentials from patch clamped guinea pig SAN cells (SANCs) perfused, in turn, with normal Tyrode solution, with the If inhibitor ivabradine (3 µM), then back to normal Tyrode, and again with the ryanodine channels inhibitor ryanodine (3 µM). We have found that, together with the expected increase in beating cycle length (+25%), the application of ivabradine brought about a significant and dramatic increase in beat-to-beat cycle length variability (+50%). Despite the similar effect on firing rate, ryanodine did not modify significantly beat-to-beat cycle length variability. Acetylcholine was also applied and led to a 131% increase of beating cycle length, with only a 70% increase in beat-to-beat cycle length variability. We conclude that the main source of inter-beat variability of SANCs firing rate is related to the mechanism of the calcium clock, whereas the membrane clock seems to act in stabilizing rate. Accordingly, when the membrane clock is silenced by application of ivabradine, stochastic variations of the calcium clock are free to make SANCs beating rhythm more variable.


Assuntos
Cálcio/metabolismo , Periodicidade , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Nó Sinoatrial/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Alcaloides/farmacologia , Animais , Benzazepinas/farmacologia , Fármacos Cardiovasculares/farmacologia , Agonistas Colinérgicos/farmacologia , Cobaias , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Transporte de Íons , Ivabradina , Masculino , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Rianodina/farmacologia , Retículo Sarcoplasmático/efeitos dos fármacos , Nó Sinoatrial/citologia , Nó Sinoatrial/efeitos dos fármacos , Sódio/metabolismo , Trocador de Sódio e Cálcio/antagonistas & inibidores
7.
Math Biosci ; 228(1): 56-70, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20801131

RESUMO

Spatial heterogeneity in the properties of ion channels generates spatial dispersion of ventricular repolarization, which is modulated by gap junctional coupling. However, it is possible to simulate conditions in which local differences in excitation properties are electrophysiologically silent and only play a role in pathological states. We use a numerical procedure on the Luo-Rudy phase 1 model of the ventricular action potential (AP1) in order to find a modified set of model parameters which generates an action potential profile (AP2) almost identical to AP1. We show that, although the two waveforms elicited from resting conditions as a single AP are very similar and belong to membranes sharing similar passive electrical properties, the modified membrane generating AP2 is a weaker current source than the one generating AP1, has different sensitivity to up/down-regulation of ion channels and to extracellular potassium, and a different electrical restitution profile. We study electrotonic interaction of AP1- and AP2- type membranes in cell pairs and in cable conduction, and find differences in source-sink properties which are masked in physiological conditions and become manifest during intercellular uncoupling or partial block of ion channels, leading to unidirectional block and spatial repolarization gradients. We provide contour plot representations that summarize differences and similarities. The present report characterizes an inverse problem in cardiac cells, and strengthen the recently emergent notion that a comprehensive characterization and validation of cell models and their components are necessary in order to correctly understand simulation results at higher levels of complexity.


Assuntos
Potenciais de Ação/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Coração/fisiologia , Modelos Cardiovasculares , Algoritmos , Animais , Simulação por Computador , Condutividade Elétrica , Coração/efeitos dos fármacos , Humanos , Miócitos Cardíacos/fisiologia , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/fisiologia , Função Ventricular/fisiologia
8.
Exp Physiol ; 92(5): 859-69, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17573414

RESUMO

Adaptation of action potential duration (APD) to pacing cycle length (CL) has been previously characterized in isolated cardiomyocytes for sudden changes in constant CL and for pre-/postmature stimuli following constant pacing trains. However, random fluctuations characterize both physiological sinus rhythm (up to 10% of mean CL) and intrinsic beat-to-beat APD at constant pacing rate. We analysed the beat-to-beat sensitivity of each APD to the preceding CL during constant-sudden, random or linearly changing pacing trains in single patch clamped rat left ventricular myocytes, in the absence of the autonomic and electrotonic effects that modulate rate dependency in the intact heart. Beat-to-beat variability of APD at -60 mV (APD(-60 mV)), quantified as S.D. over 10-beat sequences, increased with corresponding mean APD. When measured as coefficient of variability (CV), APD(-60 mV) variability was inversely proportional to pacing frequency (from 1.2% at 5 Hz to 3.2% at 0.2 Hz). It was increased, at a basic CL (BCL) of 250 ms, by 55% by the L-type calcium current (I(CaL)) blocker nifedipine, and decreased by 23% by the transient-outward potassium current (I(to)) blocker 4-aminopyridine. Variability of APD at BCL of 250 ms prevented the detection of random changes of CL smaller than approximately 5%. Ten per cent random changes in CL were detected as a 40% increase in CV of APD and tended to correlate with it (r = 0.43). Block of I(CaL) depressed this correlation (r = 0.23), whereas block of I(to) significantly increased it (r = 0.67); this was similar with linearly changing CL ramps (ranging +/-10% and +/-20% of 250 ms). We conclude that beat-to-beat APD variability, a major determinant of the propensity for development of arrhythmia in the heart, is present in isolated myocytes, where it is dependent on mean APD and pacing rate. Action potential duration shows a beat-to-beat positive correlation with preceding randomly/linearly changing CL, which can be pharmacologically modulated.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/fisiopatologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , 4-Aminopiridina/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/fisiologia , Ventrículos do Coração/citologia , Técnicas In Vitro , Masculino , Modelos Biológicos , Nifedipino/farmacologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/fisiologia , Ratos , Ratos Wistar
9.
J Cardiovasc Pharmacol ; 47(2): 295-302, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16495769

RESUMO

Cardiac hypertrophy induces morpho-functional myocardial alterations favoring arrhythmogenesis, especially under specific conditions such as sympathetic stimulation. We analyzed whether the dopaminergic agent CHF-1024, given its effect in decreasing adrenergic drive and collagen deposition in hypertrophied hearts, can also reduce arrhythmia vulnerability. Eighty-one male Wistar rats with intrarenal aortic coarctation and 18 control animals were studied. Fifty-eight banded animals were treated with CHF-1024 at four different doses (6, 2, 0.67, or 0.067 mg/Kg/die). One month after aortic ligature, spontaneous and sympathetic-induced ventricular arrhythmic events (VAEs) were telemetrically recorded in conscious animals. After sacrifice, membrane capacitance (Cm) and action potential duration (APD) were measured in isolated left ventricular myocytes (patch-clamp). In all groups, spontaneous VAEs were negligible whereas they significantly increased during sympathetic activation (stress exposure). Banded untreated animals showed a higher number of stress-induced VAEs, longer action potentials, and larger values of Cm and cell width as compared with control group. The treatment with CHF-1024 exhibited an antiarrhythmic effect, abolished APD prolongation, and reduced cell width at all doses. The lowest dose also prevented Cm increase. In conclusion, we demonstrated that in this model of pressure-overload hypertrophy CHF-1024 reduces arrhythmogenesis and causes a recovery of cell excitable properties toward a normal phenotype.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Agonistas alfa-Adrenérgicos/uso terapêutico , Arritmias Cardíacas/prevenção & controle , Cardiomegalia/fisiopatologia , Miócitos Cardíacos/fisiologia , Tetra-Hidronaftalenos/uso terapêutico , Pressão Ventricular/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cardiomegalia/patologia , Tamanho Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Ventrículos do Coração/citologia , Ventrículos do Coração/fisiopatologia , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Telemetria , Fatores de Tempo , Pressão Ventricular/efeitos dos fármacos , Remodelação Ventricular
10.
Exp Physiol ; 91(3): 571-80, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16452123

RESUMO

We have analysed alterations of alpha-skeletal actin expression and volume fraction of fibrosis in the ventricular myocardium and their functional counterpart in terms of arrhythmogenesis and haemodynamic variables, in rats with different degrees of compensated cardiac hypertrophy induced by infra-renal abdominal aortic coarctation. The following coarctation calibres were used: 1.3 (AC1.3 group), 0.7 (AC0.7) and 0.4 mm (AC0.4); age-matched rats were used as controls (C group). One month after surgery, spontaneous and sympathetic-induced ventricular arrhythmias were telemetrically recorded from conscious freely moving animals, and invasive haemodynamic measurements were performed in anaesthetized animals. After killing, subgroups of AC and C rats were used to evaluate in the left ventricle the expression and spatial distribution of alpha-skeletal actin and the amount of perivascular and interstitial fibrosis. As compared with C, all AC groups exhibited higher values of systolic pressure, ventricular weight and ventricular wall thickness. AC0.7 and AC0.4 rats also showed a larger amount of fibrosis and upregulation of alpha-skeletal actin expression associated with a higher vulnerability to ventricular arrhythmias (AC0.7 and AC0.4) and enhanced myocardial contractility (AC0.4). Our results illustrate the progressive changes in the extracellular matrix features accompanying early ventricular remodelling in response to different degrees of pressure overload that may be involved in the development of cardiac electrical instability. We also demonstrate for the first time a linear correlation between an increase in alpha-skeletal actin expression and the degree of compensated cardiac hypertrophy, possibly acting as an early compensatory mechanism to maintain normal mechanical performance.


Assuntos
Actinas/metabolismo , Pressão Sanguínea , Cardiomegalia/fisiopatologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Fibrilação Ventricular/fisiopatologia , Animais , Cardiomegalia/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibrose , Frequência Cardíaca , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Ratos Wistar , Índice de Gravidade de Doença , Estatística como Assunto , Disfunção Ventricular Esquerda/patologia , Fibrilação Ventricular/patologia
11.
Exp Physiol ; 89(4): 387-96, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15123554

RESUMO

In normal rats, we analysed the arrhythmogenic role of intrinsic action potential duration (APD) heterogeneity. In each animal, ventricular arrhythmic events (VAEs) occurring spontaneously and during the exposure to an acute social challenge were telemetrically recorded. Action potentials were recorded from isolated left ventricular myocytes, at a pacing rate of 5 Hz (patch clamp: current-clamp mode). APDs were measured at -20 mV, -30 mV, -40 mV, -50 mV and -60 mV. The difference between the shortest and the longest APD was also computed, as an index of individual APD heterogeneity. Animals predisposed to stress-induced arrhythmias showed higher values of APD and APD heterogeneity as compared with the remaining rats. We concluded that, in the normal heart, a large intrinsic APD heterogeneity resulting from specific electrophysiological properties of ventricular myocytes is not in itself arrhythmogenic, but can predispose towards arrhythmia development under certain conditions, such as autonomic activation.


Assuntos
Potenciais de Ação/fisiologia , Miócitos Cardíacos/fisiologia , Estresse Psicológico/fisiopatologia , Taquicardia Ventricular/fisiopatologia , Animais , Comportamento Animal , Capacitância Elétrica , Eletrocardiografia , Ventrículos do Coração/citologia , Ventrículos do Coração/fisiopatologia , Masculino , Ratos , Ratos Wistar , Comportamento Social , Taquicardia Ventricular/diagnóstico , Telemetria
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa