Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 180(4): 2182-2197, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31160506

RESUMO

Photodamage of the PSII reaction center (RC) is an inevitable process in an oxygen-rich environment. The damaged PSII RC proteins (Dam-PSII) undergo degradation via the thylakoid membrane-bound FtsH metalloprotease, followed by posttranslational assembly of PSII. While the effect of Dam-PSII on gene regulation is described for cyanobacteria, its role in land plants is largely unknown. In this study, we reveal an intriguing retrograde signaling pathway by using the Arabidopsis (Arabidopsis thaliana) yellow variegated2-9 mutant, which expresses a mutated FtsH2 (FtsH2G267D) metalloprotease, specifically impairing its substrate-unfolding activity. This lesion leads to the perturbation of PSII protein homeostasis (proteostasis) and the accumulation of Dam-PSII. Subsequently, this results in an up-regulation of salicylic acid (SA)-responsive genes, which is abrogated by inactivation of either an SA transporter in the chloroplast envelope membrane or extraplastidic SA signaling components as well as by removal of SA. These results suggest that the stress hormone SA, which is mainly synthesized via the chloroplast isochorismate pathway in response to the impaired PSII proteostasis, mediates the retrograde signaling. These findings reinforce the emerging view of chloroplast function toward plant stress responses and suggest SA as a potential plastid factor mediating retrograde signaling.


Assuntos
Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Mutação , Proteostase/genética , Proteostase/fisiologia , Transdução de Sinais
2.
Mol Plant Microbe Interact ; 32(1): 65-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29958083

RESUMO

A robust regulation of plant immune responses requires a multitude of positive and negative regulators that act in concert. The immune-associated nucleotide-binding (IAN) gene family members are associated with immunity in different organisms, although no characterization of their function has been carried out to date in plants. In this work, we analyzed the expression patterns of IAN genes and found that IAN9 is repressed upon pathogen infection or treatment with immune elicitors. IAN9 encodes a plasma membrane-localized protein that genetically behaves as a negative regulator of immunity. A novel ian9 mutant generated by CRISPR/Cas9 shows increased resistance to Pseudomonas syringae, while transgenic plants overexpressing IAN9 show a slight increase in susceptibility. In vivo immunoprecipitation of IAN9-green fluorescent protein followed by mass spectrometry analysis revealed that IAN9 associates with a previously uncharacterized C3HC4-type RING-finger domain-containing protein that we named IAN9-associated protein 1 (IAP1), which also acts as a negative regulator of basal immunity. Interestingly, neither ian9 or iap1 mutant plants show any obvious developmental phenotype, suggesting that they display enhanced inducible immunity rather than constitutive immune responses. Because both IAN9 and IAP1 have orthologs in important crop species, they could be suitable targets to generate plants more resistant to diseases caused by bacterial pathogens without yield penalty.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação ao GTP , Proteínas de Membrana , Imunidade Vegetal , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas/imunologia , Pseudomonas syringae
3.
Plant Biotechnol J ; 16(7): 1349-1362, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29265643

RESUMO

Ralstonia solanacearum, the causal agent of bacterial wilt disease, is considered one of the most destructive bacterial pathogens due to its lethality, unusually wide host range, persistence and broad geographical distribution. In spite of the extensive research on plant immunity over the last years, the perception of molecular patterns from R. solanacearum that activate immunity in plants is still poorly understood, which hinders the development of strategies to generate resistance against bacterial wilt disease. The perception of a conserved peptide of bacterial flagellin, flg22, is regarded as paradigm of plant perception of invading bacteria; however, no elicitor activity has been detected for R. solanacearum flg22. Recent reports have shown that other epitopes from flagellin are able to elicit immune responses in specific species from the Solanaceae family, yet our results show that these plants do not perceive any epitope from R. solanacearum flagellin. Searching for elicitor peptides from R. solanacearum, we found several protein sequences similar to the consensus of the elicitor peptide csp22, reported to elicit immunity in specific Solanaceae plants. A R. solanacearum csp22 peptide (csp22Rsol ) was indeed able to trigger immune responses in Nicotiana benthamiana and tomato, but not in Arabidopsis thaliana. Additionally, csp22Rsol treatment conferred increased resistance to R. solanacearum in tomato. Transgenic A. thaliana plants expressing the tomato csp22 receptor (SlCORE) gained the ability to respond to csp22Rsol and became more resistant to R. solanacearum infection. Our results shed light on the mechanisms for perception of R. solanacearum by plants, paving the way for improving current approaches to generate resistance against R. solanacearum.


Assuntos
Peptídeos/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Ralstonia solanacearum/metabolismo , Solanaceae/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Resistência à Doença , Epitopos/imunologia , Flagelina/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/imunologia , Solanaceae/microbiologia , Nicotiana/imunologia , Nicotiana/microbiologia
4.
Stand Genomic Sci ; 12: 29, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28428834

RESUMO

Ralstonia solanacearum is an extremely destructive pathogen able to cause disease in a wide range of host plants. Here we report the draft genome sequences of the strains FJAT-91, FJAT-452 and FJAT-462, isolated from tomato, eggplant, and chili pepper, respectively, in China. In addition to the genome annotation, we performed a search for type-III secreted effectors in these strains, providing a detailed annotation of their presence and distinctive features compared to the effector repertoire of the reference phylotype I strain (GMI1000). In this analysis, we found that each strain has a unique effector repertoire, encoding both strain-specific effector variants and variations shared among all three strains. Our study, based on strains isolated from different hosts within the same geographical location, provides insight into effector repertoires sufficient to cause disease in different hosts, and may contribute to the identification of host specificity determinants for R. solanacearum.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa