RESUMO
OBJECTIVE: Single-cell transcriptomics was used to determine the possible cell-type specificity of periodontitis susceptibility genes. BACKGROUND: The last decade has witnessed remarkable advances in the field of human genomics. Despite many advances, the genetic factors associated with or contributing to the periodontitis pathogenesis have only been identified to a limited extent and are often poorly validated. Confirming whether a given single nucleotide polymorphism has an association with periodontitis requires a robust mechanistic explanation on the functional consequences of a given genetic variant. METHODS: We globally assessed the expression of 26 disease-associated genes identified by GWAS within the gingival mucosa. A total of 12 411 cells from 4 different donors were analysed. Differentially expressed genes were analysed using Seurat, a non-parametric Wilcoxon rank sum test. The minimum threshold for significance was defined as p < .05. RESULTS: This exploration at a cellular-level suggests diverse populations contributing to disease pathogenesis, with macrophages expressing a higher number of the analysed disease-associated genes. IL1B, PTGS2, FCGR2A, IL10 and IL1A specifically showed a more restricted expression in the myeloid lineages. CONCLUSION: This short report combines human genetics and single-cell genomics to better understand periodontitis by mapping variants to predict their cells of action and putative functions. These findings seem to suggest that innate cell dysfunction is linked to disease susceptibility.
Assuntos
Periodontite Crônica , Gengiva , Humanos , Gengiva/metabolismo , Periodontite Crônica/genética , Periodontite Crônica/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética , Análise de Sequência de RNARESUMO
RNA-binding proteins (RBPs) are emerging as important regulators of cancer pathogenesis. We reveal that the RBPs LARP4A and LARP4B are differentially overexpressed in osteosarcoma and osteosarcoma lung metastases, as well as in prostate cancer. Depletion of LARP4A and LARP4B reduced tumor growth and metastatic spread in xenografts, as well as inhibiting cell proliferation, motility, and migration. Transcriptomic profiling and high-content multiparametric analyses unveiled a central role for LARP4B, but not LARP4A, in regulating cell cycle progression in osteosarcoma and prostate cancer cells, potentially through modulating key cell cycle proteins such as Cyclins B1 and E2, Aurora B, and E2F1. This first systematic comparison between LARP4A and LARP4B assigns new pro-tumorigenic functions to LARP4A and LARP4B in bone and prostate cancer, highlighting their similarities while also indicating distinct functional differences. Uncovering clear biological roles for these paralogous proteins provides new avenues for identifying tissue-specific targets and potential druggable intervention.
RESUMO
The interplay among different cells in a tissue is essential for maintaining homeostasis. Although disease states have been traditionally attributed to individual cell types, increasing evidence and new therapeutic options have demonstrated the primary role of multicellular functions to understand health and disease, opening new avenues to understand pathogenesis and develop new treatment strategies. We recently described the cellular composition and dynamics of the human oral mucosa; however, the spatial arrangement of cells is needed to better understand a morphologically complex tissue. Here, we link single-cell RNA sequencing, spatial transcriptomics, and high-resolution multiplex fluorescence in situ hybridisation to characterise human oral mucosa in health and oral chronic inflammatory disease. We deconvolved expression for resolution enhancement of spatial transcriptomic data and defined highly specialised epithelial and stromal compartments describing location-specific immune programs. Furthermore, we spatially mapped a rare pathogenic fibroblast population localised in a highly immunogenic region, responsible for lymphocyte recruitment through CXCL8 and CXCL10 and with a possible role in pathological angiogenesis through ALOX5AP. Collectively, our study provides a comprehensive reference for the study of oral chronic disease pathogenesis.
Assuntos
Perfilação da Expressão Gênica , Interleucina-8 , Transcriptoma , Humanos , Quimiocina CXCL10/genética , Fibroblastos , Linfócitos , Interleucina-8/metabolismoRESUMO
Human oral soft tissues provide the first barrier of defence against chronic inflammatory disease and hold a remarkable scarless wounding phenotype. Tissue homeostasis requires coordinated actions of epithelial, mesenchymal, and immune cells. However, the extent of heterogeneity within the human oral mucosa and how tissue cell types are affected during the course of disease progression is unknown. Using single-cell transcriptome profiling we reveal a striking remodelling of the epithelial and mesenchymal niches with a decrease in functional populations that are linked to the aetiology of the disease. Analysis of ligand-receptor interaction pairs identify potential intercellular hubs driving the inflammatory component of the disease. Our work establishes a reference map of the human oral mucosa in health and disease, and a framework for the development of new therapeutic strategies.