Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 357: 50-61, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30145175

RESUMO

Snake venom serine proteases (SVSPs) are commonly described as capable of affecting hemostasis by interacting with several coagulation system components. In this study, we describe the isolation and characterization of BjSP from Bothrops jararaca snake venom, a serine protease with distinctive properties. This enzyme was isolated by three consecutive chromatographic steps and showed acidic character (pI 4.4), molecular mass of 28 kDa and N-carbohydrate content around 10%. Its partial amino acid sequence presented 100% identity to a serine protease cDNA clone previously identified from B. jararaca venom gland, but not yet isolated or characterized. BjSP was significantly inhibited by specific serine protease inhibitors and showed high stability at different pH values and temperatures. The enzyme displayed no effects on washed platelets, but was able to degrade fibrin clots in vitro and also the Aα and Bß chains of fibrinogen differently from thrombin, forming additional fibrinopeptides derived from the Bß chain, which should be related to its inability to coagulate fibrinogen solutions or platelet-poor plasma. In the mapping of catalytic subsites, the protease showed high hydrolytic specificity for tyrosine, especially in subsite S1. Additionally, its amidolytic activity on different chromogenic substrates suggests possible effects on other factors of the coagulation cascade. In conclusion, BjSP is a serine protease that acts nonspecifically on fibrinogen, generating different Bß fibrinopeptides and thus not forming fibrin clots. Its distinguished properties in comparison to most SVSPs stimulate further studies in an attempt to validate its potential as a defibrinogenating agent.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Fibrina/química , Fibrinogênio/metabolismo , Serina Proteases/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Fibrinogênio/química , Humanos , Concentração de Íons de Hidrogênio , Lorazepam , Serina Proteases/química , Adulto Jovem
2.
J Phys Chem B ; 115(28): 8883-90, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21650176

RESUMO

The effects of the changes in the temperature and in the water chemical potential on the energetic of the actinomycin D (ACTD) interaction with natural DNA are studied. At reduced water chemical potential, induced by the addition of neutral solute (sucrose), the ACTD-to-DNA binding isotherms show that the drug accesses two types of binding sites: strong and weak. The binding constants to the stronger sites are sensitive to changes in the temperature and in the water chemical potential, while the weak sites are practically insensitive to these changes. The van't Hoff analyses of the binding in different water chemical potential shows that the binding process to the more specific sites is endothermic in phosphate buffer (ΔH(vH) ∼ 1 kcal/mol) and becomes exothermic when the water chemical potential decreases (ΔH(vH) = -11 kcal/mol in sucrose 30%). The number of water molecules released on the binding to the stronger sites, obtained from the slopes of linkage plots in different temperatures, increases with the decrease in the temperature. Ring closure reactions in the presence of neutral solutes have shown that the reduction in the water activity induces DNA unwinding. It was observed that both reduced water chemical potential and small ratios of daunomycin bound per base pairs have the same effects on the ACTD binding isotherms and consequently on the binding thermodynamic parameters. The results presented indicate that the ACTD binding to the recognition site is enthalpycally unfavorable, which should be compensated by the deformation in the DNA. This compensation would probably be the origin of the synergism observed for these two drugs.


Assuntos
DNA/química , Dactinomicina/química , Água/química , Animais , Antibióticos Antineoplásicos/química , Bovinos , DNA/metabolismo , Entropia , Sacarose/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa