Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Nature ; 592(7856): 747-755, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33911268

RESUMO

Oxytocin (OXT; hereafter OT) and arginine vasopressin or vasotocin (AVP or VT; hereafter VT) are neurotransmitter ligands that function through specific receptors to control diverse functions1,2. Here we performed genomic analyses on 35 species that span all major vertebrate lineages, including newly generated high-contiguity assemblies from the Vertebrate Genomes Project3,4. Our findings support the claim5 that OT (also known as OXT) and VT (also known as AVP) are adjacent paralogous genes that have resulted from a local duplication, which we infer was through DNA transposable elements near the origin of vertebrates and in which VT retained more of the parental sequence. We identified six major oxytocin-vasotocin receptors among vertebrates. We propose that all six of these receptors arose from a single receptor that was shared with the common ancestor of invertebrates, through a combination of whole-genome and large segmental duplications. We propose a universal nomenclature based on evolutionary relationships for the genes that encode these receptors, in which the genes are given the same orthologous names across vertebrates and paralogous names relative to each other. This nomenclature avoids confusion due to differential naming in the pre-genomic era and incomplete genome assemblies, furthers our understanding of the evolution of these genes, aids in the translation of findings across species and serves as a model for other gene families.


Assuntos
Evolução Molecular , Ocitocina/genética , Receptores de Ocitocina/genética , Receptores de Vasopressinas/genética , Vasotocina/genética , Animais , Duplicação Gênica , Ligantes , Família Multigênica , Filogenia , Sintenia , Terminologia como Assunto , Vertebrados/genética
2.
Proc Natl Acad Sci U S A ; 121(4): e2309881120, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190514

RESUMO

Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.


Assuntos
Secas , Ecossistema , Pradaria , Ciclo do Carbono , Mudança Climática , Receptores Proteína Tirosina Quinases
3.
Nat Methods ; 19(11): 1461-1471, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303019

RESUMO

Cyclic adenosine monophosphate (cAMP) signaling integrates information from diverse G-protein-coupled receptors, such as neuromodulator receptors, to regulate pivotal biological processes in a cellular-specific and subcellular-specific manner. However, in vivo cellular-resolution imaging of cAMP dynamics remains challenging. Here, we screen existing genetically encoded cAMP sensors and further develop the best performer to derive three improved variants, called cAMPFIREs. Compared with their parental sensor, these sensors exhibit up to 10-fold increased sensitivity to cAMP and a cytosolic distribution. cAMPFIREs are compatible with both ratiometric and fluorescence lifetime imaging and can detect cAMP dynamics elicited by norepinephrine at physiologically relevant, nanomolar concentrations. Imaging of cAMPFIREs in awake mice reveals tonic levels of cAMP in cortical neurons that are associated with wakefulness, modulated by opioids, and differentially regulated across subcellular compartments. Furthermore, enforced locomotion elicits neuron-specific, bidirectional cAMP dynamics. cAMPFIREs also function in Drosophila. Overall, cAMPFIREs may have broad applicability for studying intracellular signaling in vivo.


Assuntos
Técnicas Biossensoriais , Animais , Camundongos , Técnicas Biossensoriais/métodos , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Drosophila/metabolismo
4.
Genome Res ; 31(11): 2035-2049, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34667117

RESUMO

Vocal learning, the ability to imitate sounds from conspecifics and the environment, is a key component of human spoken language and learned song in three independently evolved avian groups-oscine songbirds, parrots, and hummingbirds. Humans and each of these three bird clades exhibit specialized behavioral, neuroanatomical, and brain gene expression convergence related to vocal learning, speech, and song. To understand the evolutionary basis of vocal learning gene specializations and convergence, we searched for and identified accelerated genomic regions (ARs), a marker of positive selection, specific to vocal learning birds. We found avian vocal learner-specific ARs, and they were enriched in noncoding regions near genes with known speech functions or brain gene expression specializations in humans and vocal learning birds, including FOXP2, NEUROD6, ZEB2, and MEF2C, and near genes with major neurodevelopmental functions, including NR2F1, NRP2, and BCL11B We also found enrichment near the SFARI class S genes associated with syndromic vocal communication forms of autism spectrum disorders. These findings reveal strong candidate noncoding regions near genes for the evolutionary adaptations that distinguish vocal learning species from their close vocal nonlearning relatives and provide further evidence of molecular convergence between birdsong and human spoken language.


Assuntos
Aves Canoras , Fala , Animais , Encéfalo/metabolismo , Genômica , Humanos , Aprendizagem , Proteínas Repressoras/metabolismo , Aves Canoras/genética , Proteínas Supressoras de Tumor/metabolismo , Vocalização Animal
5.
Genome Res ; 31(2): 337-347, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33361113

RESUMO

Understanding the changes in diverse molecular pathways underlying the development of breast tumors is critical for improving diagnosis, treatment, and drug development. Here, we used RNA-profiling of canine mammary tumors (CMTs) coupled with a robust analysis framework to model molecular changes in human breast cancer. Our study leveraged a key advantage of the canine model, the frequent presence of multiple naturally occurring tumors at diagnosis, thus providing samples spanning normal tissue and benign and malignant tumors from each patient. We showed human breast cancer signals, at both expression and mutation level, are evident in CMTs. Profiling multiple tumors per patient enabled by the CMT model allowed us to resolve statistically robust transcription patterns and biological pathways specific to malignant tumors versus those arising in benign tumors or shared with normal tissues. We showed that multiple histological samples per patient is necessary to effectively capture these progression-related signatures, and that carcinoma-specific signatures are predictive of survival for human breast cancer patients. To catalyze and support similar analyses and use of the CMT model by other biomedical researchers, we provide FREYA, a robust data processing pipeline and statistical analyses framework.

6.
Microb Ecol ; 87(1): 58, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602532

RESUMO

Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.


Assuntos
Microbiota , Micorrizas , China , Florestas , Raios gama , Solo
7.
Mol Ecol ; 32(24): 6924-6938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37873915

RESUMO

Environmental circumstances shaping soil microbial communities have been studied extensively. However, due to disparate study designs, it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 of those containing regional plant productivity gradients) to examine (i) if similar abiotic or biotic factors predict both large-scale (across sites) and regional-scale (within sites) patterns in bacterial and fungal community composition, and (ii) if microbial community composition differs consistently at two levels of regional plant productivity (low vs. high). Our results revealed that bacteria were associated with particular soil properties (such as base saturation) and both bacteria and fungi were associated with plant community composition across sites and within the majority of sites. Moreover, a discernible microbial community signal emerged, clearly distinguishing high and low-productivity soils across different grasslands independent of their location in the world. Hence, regional productivity differences may be typified by characteristic soil microbial communities across the grassland biome. These results could encourage future research aiming to predict the general effects of global changes on soil microbial community composition in grasslands and to discriminate fertile from infertile systems using generally applicable microbial indicators.


Assuntos
Pradaria , Microbiota , Microbiologia do Solo , Microbiota/genética , Fungos/genética , Bactérias/genética , Plantas/microbiologia , Solo
8.
Plant Cell ; 32(5): 1501-1518, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32205456

RESUMO

Leaf morphogenesis requires growth polarized along three axes-proximal-distal (P-D) axis, medial-lateral axis, and abaxial-adaxial axis. Grass leaves display a prominent P-D polarity consisting of a proximal sheath separated from the distal blade by the auricle and ligule. Although proper specification of the four segments is essential for normal morphology, our knowledge is incomplete regarding the mechanisms that influence P-D specification in monocots such as maize (Zea mays). Here, we report the identification of the gene underlying the semidominant, leaf patterning maize mutant Hairy Sheath Frayed1 (Hsf1). Hsf1 plants produce leaves with outgrowths consisting of proximal segments-sheath, auricle, and ligule-emanating from the distal blade margin. Analysis of three independent Hsf1 alleles revealed gain-of-function missense mutations in the ligand binding domain of the maize cytokinin (CK) receptor Z. mays Histidine Kinase1 (ZmHK1) gene. Biochemical analysis and structural modeling suggest the mutated residues near the CK binding pocket affect CK binding affinity. Treatment of the wild-type seedlings with exogenous CK phenocopied the Hsf1 leaf phenotypes. Results from expression and epistatic analyses indicated the Hsf1 mutant receptor appears to be hypersignaling. Our results demonstrate that hypersignaling of CK in incipient leaf primordia can reprogram developmental patterns in maize.


Assuntos
Padronização Corporal , Citocininas/metabolismo , Mutação/genética , Folhas de Planta/embriologia , Folhas de Planta/genética , Transdução de Sinais , Zea mays/genética , Sítios de Ligação , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ligantes , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação para Cima/genética
9.
Microb Ecol ; 84(3): 834-843, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34674014

RESUMO

Successful host plant colonization by tree-killing bark beetle-symbiotic fungal complexes depends on host suitability, which is largely determined by host defense metabolites such as monoterpenes. Studies have shown the ability of specific blends of host monoterpenes to influence bark beetles or their fungal symbionts, but how biologically relevant blends of host monoterpenes influence bark beetle-symbiotic fungal interaction is unknown. We tested how interactions between two host species (lodgepole pine or jack pine) and two fungal symbionts of mountain pine beetle (Grosmannia clavigera or Ophiostoma montium) affect the performance of adult female beetles in vitro. Beetles treated with the propagules of G. clavigera or O. montium or not treated (natural fungal load) were introduced into media amended with a blend of the entire monoterpene profile of either host species and beetle performance was compared. Overall, host blends altered beetle performance depending on the fungal species used in the beetle amendment. When beetles were amended with G. clavigera, their performance was superior over beetles amended with O. montium in either host blend. Furthermore, G. clavigera-amended beetles performed better in media amended with host blends than without a host blend; in contrast, O. montium-amended beetles performed better in media without a host blend than with a host blend. Overall, this study showed that host defense metabolites affect host suitability to bark beetles through influencing their fungal symbionts and that different species of fungal symbionts respond differentlly to host defense metabolites.


Assuntos
Besouros , Pinus , Gorgulhos , Animais , Besouros/microbiologia , Casca de Planta , Pinus/microbiologia , Simbiose , Gorgulhos/microbiologia , Monoterpenos/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(36): 17867-17873, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427510

RESUMO

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.


Assuntos
Biodiversidade , Ecossistema , Plantas , Teorema de Bayes , Mudança Climática , Atividades Humanas , Humanos
11.
New Phytol ; 231(6): 2308-2318, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34110016

RESUMO

Vertical root segregation and the resulting niche partitioning can be a key underpinning of species coexistence. This could result from substantial interspecific variations in root profiles and rooting plasticity in response to soil heterogeneity and neighbours, but they remain largely untested in forest communities. In a diverse forest in subtropical China, we randomly sampled > 4000 root samples from 625 0-30 cm soil profiles. Using morphological and DNA-based methods, we identified 109 woody plant species, determined the degree of vertical fine-root segregation, and examined rooting plasticity in response to soil heterogeneity and neighbour structure. We found no evidence of vertical fine-root segregation among cooccurring species. By contrast, root abundance of different species tended to be positively correlated within soil zones. Underlying these findings was a lack of interspecific variation in fine-root profiles with over 90% of species concentrated in the 0-10 cm soil zone with only one species dominating in the 10-20 cm soil zone. Root profiles exhibited low responsiveness to root neighbours but tended to be shallow in soils with low phosphorus and copper content. These findings suggest that if there is niche differentiation leading to coexistence in this diverse forest, it would be occurring by mechanisms other than vertical fine-root segregation.


Assuntos
Raízes de Plantas , Árvores , Florestas , Solo , Madeira
12.
New Phytol ; 229(2): 1105-1117, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32557647

RESUMO

Disturbances have altered community dynamics in boreal forests with unknown consequences for belowground ecological processes. Soil fungi are particularly sensitive to such disturbances; however, the individual response of fungal guilds to different disturbance types is poorly understood. Here, we profiled soil fungal communities in lodgepole pine forests following a bark beetle outbreak, wildfire, clear-cut logging, and salvage-logging. Using Illumina MiSeq to sequence ITS1 and SSU rDNA, we characterized communities of ectomycorrhizal, arbuscular mycorrhizal, saprotrophic, and pathogenic fungi in sites representing each disturbance type paired with intact forests. We also quantified soil fungal biomass by measuring ergosterol. Abiotic disturbances changed the community composition of ectomycorrhizal fungi and shifted the dominance from ectomycorrhizal to saprotrophic fungi compared to intact forests. The disruption of the soil organic layer with disturbances correlated with the decline of ectomycorrhizal and the increase of arbuscular mycorrhizal fungi. Wildfire changed the community composition of pathogenic fungi but did not affect their proportion and diversity. Fungal biomass declined with disturbances that disrupted the forest floor. Our results suggest that the disruption of the forest floor with disturbances, and the changes in C and nutrient dynamics it may promote, structure the fungal community with implications for fungal biomass-C.


Assuntos
Micobioma , Micorrizas , Pinus , Animais , Florestas , Fungos , Solo , Microbiologia do Solo
13.
New Phytol ; 231(2): 763-776, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33507570

RESUMO

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.


Assuntos
Micorrizas , Ecossistema , Fungos , Concentração de Íons de Hidrogênio , Filogenia , Solo , Microbiologia do Solo , Temperatura
14.
Environ Sci Technol ; 55(11): 7256-7265, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34013726

RESUMO

Desert steppe, a unique ecotone between steppe and desert in Eurasia, is considered highly vulnerable to global change. However, the long-term impact of warming and nitrogen deposition on plant biomass production and ecosystem carbon exchange in a desert steppe remains unknown. A 12-year field experiment was conducted in a Stipa breviflora desert steppe in northern China. A split-design was used, with warming simulated by infrared radiators as the primary factor and N addition as the secondary factor. Our long-term experiment shows that warming did not change net ecosystem exchange (NEE) or total aboveground biomass (TAB) due to contrasting effects on C4 (23.4% increase) and C3 (11.4% decrease) plant biomass. However, nitrogen addition increased TAB by 9.3% and NEE by 26.0% by increasing soil available N content. Thus, the studied desert steppe did not switch from a carbon sink to a carbon source in response to global change and positively responded to nitrogen deposition. Our study indicates that the desert steppe may be resilient to long-term warming by regulating plant species with contrasting photosynthetic types and that nitrogen deposition could increase plant growth and carbon sequestration, providing negative feedback on climate change.


Assuntos
Ecossistema , Nitrogênio , Carbono , China , Nitrogênio/análise , Solo
15.
Ecol Lett ; 23(8): 1298-1309, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32369874

RESUMO

Anthropogenic disturbance has generated a significant loss of biodiversity worldwide and grazing by domestic herbivores is a contributing disturbance. Although the effects of grazing on plants are commonly explored, here we address the potential multi-trophic effects on animal biodiversity (e.g. herbivores, pollinators and predators). We conducted a meta-analysis on 109 independent studies that tested the response of animals or plants to livestock grazing relative to livestock excluded. Across all animals, livestock exclusion increased abundance and diversity, but these effects were greatest for trophic levels directly dependent on plants, such as herbivores and pollinators. Detritivores were the only trophic level whose abundance decreased with livestock exclusion. We also found that the number of years since livestock was excluded influenced the community and that the effects of grazer exclusion on animal diversity were strongest in temperate climates. These findings synthesise the effects of livestock grazing beyond plants and demonstrate the indirect impacts of livestock grazing on multiple trophic levels in the animal community. We identified the potentially long-term impacts that livestock grazing can have on lower trophic levels and consequences for biological conservation. We also highlight the potentially inevitable cost to global biodiversity from livestock grazing that must be balanced against socio-economic benefits.


Assuntos
Biodiversidade , Gado , Animais , Ecossistema , Herbivoria , Estado Nutricional , Plantas
16.
New Phytol ; 226(1): 244-253, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31536638

RESUMO

Nutrient distribution and neighbours can impact plant growth, but how neighbours shape root-foraging strategy for nutrients is unclear. Here, we explore new patterns of plant foraging for nutrients as affected by neighbours to improve nutrient acquisition. Maize (Zea mays) was grown alone (maize), or with maize (maize/maize) or faba bean (Vicia faba) (maize/faba bean) as a neighbour on one side and with or without a phosphorus (P)-rich zone on the other in a rhizo-box experiment. Maize demonstrated root avoidance in maize/maize, with reduced root growth in 'shared' soil, and increased growth away from its neighbours. Conversely, maize proliferated roots in the proximity of neighbouring faba bean roots that had greater P availability in the rhizosphere (as a result of citrate and acid phosphatase exudation) compared with maize roots. Maize proliferated more roots, but spent less time to reach, and grow out of, the P patches away from neighbours in the maize/maize than in the maize/faba bean experiment. Maize shoot biomass and P uptake were greater in the heterogeneous P treatment with maize/faba bean than with maize/maize system. The foraging strategy of maize roots is an integrated function of heterogeneous distribution of nutrients and neighbouring plants, thus improving nutrient acquisition and maize growth. Understanding the foraging patterns is critical for optimizing nutrient management in crops.


Assuntos
Fósforo , Raízes de Plantas , Zea mays , Nutrientes , Fósforo/metabolismo , Solo
17.
Proc Natl Acad Sci U S A ; 114(45): E9589-E9597, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078308

RESUMO

About 100 km east of Rome, in the central Apennine Mountains, a critically endangered population of ∼50 brown bears live in complete isolation. Mating outside this population is prevented by several 100 km of bear-free territories. We exploited this natural experiment to better understand the gene and genomic consequences of surviving at extremely small population size. We found that brown bear populations in Europe lost connectivity since Neolithic times, when farming communities expanded and forest burning was used for land clearance. In central Italy, this resulted in a 40-fold population decline. The overall genomic impact of this decline included the complete loss of variation in the mitochondrial genome and along long stretches of the nuclear genome. Several private and deleterious amino acid changes were fixed by random drift; predicted effects include energy deficit, muscle weakness, anomalies in cranial and skeletal development, and reduced aggressiveness. Despite this extreme loss of diversity, Apennine bear genomes show nonrandom peaks of high variation, possibly maintained by balancing selection, at genomic regions significantly enriched for genes associated with immune and olfactory systems. Challenging the paradigm of increased extinction risk in small populations, we suggest that random fixation of deleterious alleles (i) can be an important driver of divergence in isolation, (ii) can be tolerated when balancing selection prevents random loss of variation at important genes, and (iii) is followed by or results directly in favorable behavioral changes.


Assuntos
Variação Genética/genética , Genoma Mitocondrial/genética , Ursidae/genética , Agressão/fisiologia , Alelos , Aminoácidos/genética , Animais , Genômica/métodos , Filogenia , Densidade Demográfica , Cidade de Roma , Análise de Sequência de DNA
18.
Mycorrhiza ; 30(2-3): 173-183, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32088844

RESUMO

For tree seedlings in boreal forests, ectomycorrhizal (EM) fungal networks may promote, while root competition may impede establishment. Thus, disruption to EM fungal networks may decrease seedling establishment owing to the loss of positive interactions among neighbors. Widespread tree mortality can disrupt EM networks, but it is not clear whether seedling establishment will be limited by the loss of positive interactions or increased by the loss of negative interactions with surrounding roots. Depending upon the relative influence of these mechanisms, widespread tree mortality may have complicated consequences on seedling establishment, and in turn, the composition of future forests. To discern between these possible outcomes and the drivers of seedling establishment, we determined the relative importance of EM fungal networks, root presence, and the bulk soil on the establishment of lodgepole pine and white spruce seedlings along a gradient of beetle-induced tree mortality. We manipulated seedling contact with EM fungal networks and roots through the use of mesh-fabric cylinders installed in soils of lodgepole pine forests experiencing a range of overstorey tree mortality caused by mountain pine beetle. Lodgepole pine seedling survival was higher with access to EM fungal networks in undisturbed pine forests in comparison with that in beetle-killed stands. That is, overstorey tree mortality shifted fungal networks from being a benefit to a cost on seedling survival. In contrast, overstorey tree mortality did not change the relative strength of EM fungal networks, root presence and the bulk soil on survival and biomass of white spruce seedlings. Furthermore, the relative influence of EM fungal networks, root presence, and bulk soils on foliar N and P concentrations was highly contingent on seedling species and overstorey tree mortality. Our results highlight that following large-scale insect outbreak, soil-mediated processes can enable differential population growth of two common conifer species, which may result in species replacement in the future.


Assuntos
Micorrizas , Pinus , Animais , Florestas , Plântula , Árvores
19.
Mol Biol Evol ; 35(5): 1120-1129, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29471451

RESUMO

Recent genomic analyses have provided substantial evidence for past periods of gene flow from polar bears (Ursus maritimus) into Alaskan brown bears (Ursus arctos), with some analyses suggesting a link between climate change and genomic introgression. However, because it has mainly been possible to sample bears from the present day, the timing, frequency, and evolutionary significance of this admixture remains unknown. Here, we analyze genomic DNA from three additional and geographically distinct brown bear populations, including two that lived temporally close to the peak of the last ice age. We find evidence of admixture in all three populations, suggesting that admixture between these species has been common in their recent evolutionary history. In addition, analyses of ten fossil bears from the now-extinct Irish population indicate that admixture peaked during the last ice age, whereas brown bear and polar bear ranges overlapped. Following this peak, the proportion of polar bear ancestry in Irish brown bears declined rapidly until their extinction. Our results support a model in which ice age climate change created geographically widespread conditions conducive to admixture between polar bears and brown bears, as is again occurring today. We postulate that this model will be informative for many admixing species pairs impacted by climate change. Our results highlight the power of paleogenomics to reveal patterns of evolutionary change that are otherwise masked in contemporary data.


Assuntos
Mudança Climática , Fósseis , Fluxo Gênico , Hibridização Genética , Ursidae/genética , Animais , Camada de Gelo
20.
Proc Biol Sci ; 286(1911): 20190955, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31530149

RESUMO

Plants regularly encounter patchily distributed soil nutrients. A common foraging response is to proliferate roots within high-quality patches. The influence of the social environment on this behaviour has been given limited attention, despite important fitness consequences of competition for soil resources among plants. Using the common sunflower (Helianthus annuus L.), we compared localized root proliferation in a high-quality patch by plants grown alone to that of plants in two different social environments: with a neighbouring plant sharing equal access to the high-quality patch, and with a neighbouring plant present but farther from the high-quality patch such that the focal individual was in closer proximity to the high-quality patch. Sunflowers grown alone proliferated more roots within high-nutrient patches than lower-nutrient soil. Plants decreased root proliferation within a high-nutrient patch when it was equidistant to a neighbour. Conversely, plants increased root proliferation when they were in closer proximity to the patch relative to a nearby neighbour. Such contingent responses may allow sunflowers to avoid competition in highly contested patches, but to also pre-empt soil resources from neighbours when they have better access to a high-quality patch. We also compared patch occupancy by sunflowers grown alone with two equidistant high-quality patches to occupancy by sunflowers grown with two high-quality patches and a neighbour. Plants grown with a neighbour decreased root length within shared patches but did not increase root length within high-quality patches they were in closer proximity to, perhaps because resource pre-emption may be less important for individuals when resources are more abundant. These results show that nutrient foraging responses in plants can be socially contingent, and that plants may account for the possibility of pre-empting limited resources in their foraging decisions.


Assuntos
Helianthus/fisiologia , Raízes de Plantas/fisiologia , Nutrientes , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa