Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142541

RESUMO

Although various studies have investigated differences in the tissue reaction pattern to synthetic and xenogeneic bone substitute materials (BSMs), a lack of knowledge exists regarding the classification of both materials based on the DIN ISO 10993-6 scoring system, as well as the histomorphometrical measurement of macrophage subtypes within their implantation beds. Thus, the present study was conducted to analyze in vivo responses to both xenogeneic and synthetic bone substitute granules. A standardized calvaria implantation model in Wistar rats, in combination with established scoring, histological, histopathological, and histomorphometrical methods, was conducted to analyze the influence of both biomaterials on bone regeneration and the immune response. The results showed that the application of the synthetic BSM maxresorb® induced a higher pro-inflammatory tissue response, while the xenogeneic BSM cerabone® induced a higher anti-inflammatory reaction. Additionally, comparable bone regeneration amounts were found in both study groups. Histopathological scoring revealed that the synthetic BSM exhibited non-irritant scores at all timepoints using the xenogeneic BSM as control. Overall, the results demonstrated the biocompatibility of synthetic BSM maxresorb® and support the conclusion that this material class is a suitable alternative to natural BSM, such as the analyzed xenogeneic material cerabone®, for a broad range of indications.


Assuntos
Substitutos Ósseos , Animais , Anti-Inflamatórios , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio , Hidroxiapatitas , Imunidade , Ratos , Ratos Wistar
2.
In Vivo ; 36(5): 2149-2165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36099113

RESUMO

BACKGROUND: Bioglass is a highly adoptable bone substitute material which can be combined with so-called therapeutic ions. However, knowledge is poor regarding the influence of therapeutic ions on immune reactions and associated bone healing. Thus, the aim of this work was to investigate the influence of strontium- and copper-doped bioglass on the induction of M1 and M2 macrophages, as well as vascularization. MATERIALS AND METHODS: Two types of alkali glass were produced based on ICIE16 bioglass via the melt-quench method with the addition of 5 wt% copper or strontium (ICIE16-Cu and ICIE16-Sr). Pure ICIE16 and 45S5 bioglass were used as control materials. The ion release and chemical composition of the bioglass were investigated, and an in vivo experiment was subcutaneously performed on Sprague-Dawley rats. RESULTS: Scanning electron microscopy revealed significant differences in the surface morphology of the bioglass materials. Energy dispersive X-ray spectroscopy confirmed the efficiency of the doping process by showing the ion-release kinetics. ICIE16-Cu exhibited a higher ion release than ICIE16-Sr. ICIE16-Cu induced low immune cell migration and triggered not only a low number of M1 and M2 macrophages but also of blood vessels. ICIE16-Sr induced higher numbers of M1 macrophages after 30 days. Both bioglass types induced numbers of M2 macrophages comparable with those found in the control groups. CONCLUSION: Bioglass doping with copper and strontium did not significantly influence the foreign body response nor vascularization of the implantation bed in vivo. However, all the studied bioglass materials seemed to be biocompatible.


Assuntos
Cobre , Estrôncio , Animais , Cerâmica , Cobre/farmacologia , Imunidade , Íons , Ratos , Ratos Sprague-Dawley , Estrôncio/farmacologia
3.
PLoS One ; 13(10): e0206275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30346976

RESUMO

A sodium carboxy-methylcellulose (CMC)/chitosan (CS) composite sponge as drug carrier was prepared, and its structure and functions were investigated. Samples with different CMC/chitosan ratios and under different pH conditions were synthesized via a freeze-drying method. The microstructure of the dried sponges was analyzed by Scanning Electron Microscope (SEM). Molecule interactions between polymers were confirmed by Fourier transform infrared (FTIR) spectra and Thermal gravimetric analyze (TGA). The swelling degree, weight loss, in vitro drug release behavior and antibacterial property of the sponges were determined as well. The results showed that the CMC/chitosan ratio and the pH value significantly affected the appearance of the blending solution and the microstructure of the final product, and also affected the sponge's degradation behavior, drug-loading capacity and the antibacterial activity. Gentamicin (GEN) as a hydrophilic model drug was remarkably superior to the other two hydrophobic drugs, ibuprofen (IBU) and roxithromycin (ROX), with respect to in vitro releasing. Moreover, higher CMC content and lower pH value of the sponge were confirmed to lead a larger loading for GEN. The bacteriostatic experiment showed a strong antimicrobial ability of GEN-loaded sponges on inhibiting Escherichia coli.


Assuntos
Carboximetilcelulose Sódica/química , Quitosana/química , Portadores de Fármacos/química , Preparações Farmacêuticas/química , Bandagens , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Liofilização , Gentamicinas/química , Gentamicinas/metabolismo , Gentamicinas/farmacologia , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ibuprofeno/química , Ibuprofeno/metabolismo , Microscopia Eletrônica de Varredura , Preparações Farmacêuticas/metabolismo , Roxitromicina/química , Roxitromicina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa