Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 27(18): 5761-5768, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33469957

RESUMO

Nanoscale composites for high-performance electrodes employed in flexible, all-solid-state supercapacitors are being developed. A series of binder-free composites, each consisting of a transition bimetal oxide, a metal oxide, and a metal nitride grown on N-doped reduced graphene oxide (rGO)-wrapped nickel foam are obtained by using a universal strategy. Three different transition metals, Co, Mo, and Fe, are separately compounded with nickel ions, which originate from the nickel foam, to form three composites, NiCoO2 @Co3 O4 @Co2 N, NiMoO4 @MoO3 @Mo2 N, and NiFe2 O4 @Fe3 O4 @Fe2 N, respectively. These as-prepared active materials have similar regular variation patterns in their properties, including better conductivity and battery-mimicking pseudocapacitance, which result in their high whole-electrode capacitance performance [2598.3 F g-1 (39.85 F cm-2 ), 3472.6 F g-1 (41.43 F cm-2 ) and 1907.5 F g-1 (3.41 F cm-2 ) for the composites incorporating Co, Mo, and Fe, respectively]. The as-assembled flexible, all-solid-state NiCoO2 @Co3 O4 @Co2 N//KOH/PVA//NiCoO2 @Co3 O4 @Co2 N device can be easily bent and exhibits high energy density and power density of 92.8 Wh kg-1 and 1670.4 W kg-1 , respectively. The universality of this design strategy could allow it to be employed in producing hybrid materials for high-performance energy-storage devices.

2.
Phys Chem Chem Phys ; 16(43): 23967-74, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25286398

RESUMO

PbS nanoparticles (PbS NPs), an efficient sensitizer for TiO2 nanotube arrays (TiO2 NAs), were fabricated by the method of sonication-assisted successive ionic layer adsorption and reaction (SILAR). The filling degree and size of PbS NPs can be tuned by changing the repeated cycles (N) of the SILAR process. TiO2 NAs can be fully covered with PbS NPs with a size ranging from less than 4 nm to 25 nm and large aggregates inside and outside the nanotubes when N reaches 15. The growth mechanism of PbS NPs in TiO2 NAs was expounded in great detail in this work. Ultraviolet-visible diffuse-reflectance spectra and surface photovoltage spectroscopy were used to investigate the light absorption properties and the transfer behavior of photogenerated charges in PbS-modified TiO2 NA heterostructures. Results show that the absorption range of TiO2 NAs is extended from the ultraviolet to the visible region by PbS NPs modification. A heterojunction is formed between PbS NPs and TiO2 NAs, facilitating the separation of photogenerated charge carriers. This PbS NPs fully-covered TiO2 NA electrode exhibits the best photoelectrochemical performance in all PbS-sensitized TiO2 NA electrodes, due to a larger number of small PbS NPs (<4 nm). With AM 1.5G illumination at 100 mW cm(-2), its short-circuit current density, open-circuit voltage and photoelectric conversion efficiency are 9.55 mA cm(-2), 0.95 V and 2.83%, respectively.

3.
J Colloid Interface Sci ; 464: 1-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26598949

RESUMO

Charge transfer is important for the performance of a photoelectrochemical cell. Understanding photogenerated charge accumulation and separation is mandatory for the design and optimisation of photoelectrochemical cells. Unique stacked and embedded heterostructure of Sb2S3/TiO2 nanotube arrays (NTAs) was fabricated through anodic oxidation with the hydrothermal method. Surface photovoltage spectroscopy, phase spectra and photoluminescence measurements were performed to explore the mechanism by which the inorganic hole transport material CuI affects the charge transfer and photoelectrochemical properties of Sb2S3/TiO2 heterostructure NTAs. The interfacial separation and transport of photoinduced charge carriers were also examined by applying current-voltage characteristics (J-V), incident-photon-to-current conversion efficiency (IPCE) and Mott-Schottky techniques. Results show that CuI acts not only as a hole-conducting and electron-blocking material but also as a light-absorbing material in the ultraviolet range. Efficient charge transfer processes exist in CuI/Sb2S3/TiO2 heterostructure NTAs. The photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure NTAs is dramatically improved. Under AM 1.5G illumination at 100mW/cm(2), the short-circuit current density and open-circuit voltage are 3.51mA/cm(2) and 0.87V, respectively. The photoelectric conversion efficiency of CuI/Sb2S3/TiO2 heterostructure NTAs (0.95%) is 36% higher than that of Sb2S3/TiO2 heterostructure NTAs (0.66%).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa