Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Plant Cell ; 35(5): 1455-1473, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36748257

RESUMO

In most flowering plants, the female germline is initiated in the subepidermal L2 layer of ovule primordia forming a single megaspore mother cell (MMC). How signaling from the L1 (epidermal) layer could contribute to the gene regulatory network (GRN) restricting MMC formation to a single cell is unclear. We show that EPIDERMAL PATTERNING FACTOR-like (EPFL) peptide ligands are expressed in the L1 layer, together with their ERECTA family (ERf) receptor kinases, to control female germline specification in Arabidopsis thaliana. EPFL-ERf dependent signaling restricts multiple subepidermal cells from acquiring MMC-like cell identity by activating the expression of the major brassinosteroid (BR) receptor kinase BRASSINOSTEROID INSENSITIVE 1 and the BR-responsive transcription factor BRASSINOZOLE RESISTANT 1 (BZR1). Additionally, BZR1 coordinates female germline specification by directly activating the expression of a nucleolar GTP-binding protein, NUCLEOSTEMIN-LIKE 1 (NSN1), which is expressed in early-stage ovules excluding the MMC. Mutants defective in this GRN form multiple MMCs resulting in a strong reduction of seed set. In conclusion, we uncovered a ligand/receptor-like kinase-mediated signaling pathway acting upstream and coordinating BR signaling via NSN1 to restrict MMC differentiation to a single subepidermal cell.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Transdução de Sinais/genética , Proteínas de Transporte/metabolismo , Células Germinativas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Ligação a DNA/metabolismo
2.
Plant Cell ; 33(5): 1530-1553, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33570655

RESUMO

The coordinated development of sporophytic and gametophytic tissues is essential for proper ovule patterning and fertility. However, the mechanisms regulating their integrated development remain poorly understood. Here, we report that the Swi2/Snf2-Related1 (SWR1) chromatin-remodeling complex acts with the ERECTA receptor kinase-signaling pathway to control female gametophyte and integument growth in Arabidopsis thaliana by inhibiting transcription of the microRNA gene MIR398c in early-stage megagametogenesis. Moreover, pri-miR398c is transcribed in the female gametophyte but is then translocated to and processed in the ovule sporophytic tissues. Together, SWR1 and ERECTA also activate ARGONAUTE10 (AGO10) expression in the chalaza; AGO10 sequesters miR398, thereby ensuring the expression of three AGAMOUS-LIKE (AGL) genes (AGL51, AGL52, and AGL78) in the female gametophyte. In the context of sexual organ morphogenesis, these findings suggest that the spatiotemporal control of miRNA biogenesis, resulting from coordination between chromatin remodeling and cell signaling, is essential for proper ovule development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Óvulo Vegetal/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , MicroRNAs/genética , Modelos Biológicos , Mutação/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Fatores de Tempo , Transcrição Gênica
3.
Plant J ; 111(1): 250-268, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491968

RESUMO

Bacterial wilt, a severe disease involving vascular system blockade, is caused by Ralstonia solanacearum. Although both plant immunity and dehydration tolerance might contribute to disease resistance, whether and how they are related remains unclear. Herein, we showed that immunity against R. solanacearum and dehydration tolerance are coupled and regulated by the CaPti1-CaERF3 module. CaPti1 and CaERF3 are members of the serine/threonine protein kinase and ethylene-responsive factor families, respectively. Expression profiling revealed that CaPti1 and CaERF3 were upregulated by R. solanacearum inoculation, dehydration stress, and exogenously applied abscisic acid (ABA). They in turn phenocopied each other in promoting resistance of pepper (Capsicum annuum) to bacterial wilt not only by activating salicylic acid-dependent CaPR1, but also by activating dehydration tolerance-related CaOSM1 and CaOSR1 and inducing stomatal closure to reduce water loss in an ABA signaling-dependent manner. Our yeast two hybrid assay showed that CaERF3 interacted with CaPti1, which was confirmed using co-immunoprecipitation, bimolecular fluorescence complementation, and pull-down assays. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that upon R. solanacearum inoculation, CaPR1, CaOSM1, and CaOSR1 were directly targeted and positively regulated by CaERF3 and potentiated by CaPti1. Additionally, our data indicated that the CaPti1-CaERF3 complex might act downstream of ABA signaling, as exogenously applied ABA did not alter regulation of stomatal aperture by the CaPti1-CaERF3 module. Importantly, the CaPti1-CaERF3 module positively affected pepper growth and the response to dehydration stress. Collectively, the results suggested that immunity and dehydration tolerance are coupled and positively regulated by CaPti1-CaERF3 in pepper plants to enhance resistance against R. solanacearum.


Assuntos
Capsicum , Ralstonia solanacearum , Ácido Abscísico/metabolismo , Capsicum/genética , Capsicum/metabolismo , Desidratação , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
New Phytol ; 240(3): 1015-1033, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606225

RESUMO

Germline development is a key step in sexual reproduction. Sexual plant reproduction begins with the formation of haploid spores by meiosis of megaspore mother cells (MMCs). Although many evidences, directly or indirectly, show that epigenetics plays an important role in MMC specification, how it controls the commitment of the MMC to downstream stages of germline development is still unclear. Electrophoretic mobility shift assay (EMSA), western blot, immunofluorescence, and chromatin immunoprecipitation coupled with quantitative PCR analyses were performed. Genetic interactions between BZR1 transcription factor family and the SWR1-SDG2-ER pathway in the control of female germline development were further studied. The present findings showed in Arabidopsis that two epigenetic factors, the chromatin remodeling complex SWI2/SNF2-RELATED 1 (SWR1) and a writer for H3K4me3 histone modification SET DOMAIN GROUP 2 (SDG2), genetically interact with the ERECTA (ER) receptor kinase signaling pathway and regulate female germline development by restricting the MMC cell fate to a single cell in the ovule primordium and ensure that only that single cell undergoes meiosis and subsequent megaspore degeneration. We also showed that SWR1-SDG2-ER signaling module regulates female germline development by promoting the protein accumulation of BZR1 transcription factor family on the promoters of primary miRNA processing factors, HYPONASTIC LEAVES 1 (HYL1), DICER-LIKE 1 (DCL1), and SERRATE (SE) to activate their expression. Our study elucidated a Gene Regulation Network that provides new insights for understanding how epigenetic factors and receptor kinase signaling pathways function in concert to control female germline development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Células Germinativas/metabolismo , Meiose/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant Cell ; 32(9): 2842-2854, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32703817

RESUMO

In the ovules of most sexually reproducing plants, one hypodermal cell differentiates into a megaspore mother cell (MMC), which gives rise to the female germline. Trans-acting small interfering RNAs known as tasiR-ARFs have been suggested to act non-cell-autonomously to prevent the formation of multiple MMCs by repressing AUXIN RESPONSE FACTOR3 (ARF3) expression in Arabidopsis (Arabidopsis thaliana), but the underlying mechanisms are unknown. Here, we examined tasiR-ARF-related intercellular regulatory mechanisms. Expression analysis revealed that components of the tasiR-ARF biogenesis pathway are restricted to distinct ovule cell types, thus limiting tasiR-ARF production to the nucellar epidermis. We also provide data suggesting tasiR-ARF movement along the mediolateral axis into the hypodermal cells and basipetally into the chalaza. Furthermore, we used cell type-specific promoters to express ARF3m, which is resistant to tasiR-ARF regulation, in different ovule cell layers. ARF3m expression in hypodermal cells surrounding the MMC, but not in epidermal cells, led to a multiple-MMC phenotype, suggesting that tasiR-ARFs repress ARF3 in these hypodermal cells to suppress ectopic MMC fate. RNA sequencing analyses in plants with hypodermally expressed ARF3m showed that ARF3 potentially regulates MMC specification through phytohormone pathways. Our findings uncover intricate spatial restriction of tasiR-ARF biogenesis, which together with tasiR-ARF mobility enables cell-cell communication in MMC differentiation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , MicroRNAs/genética , Óvulo Vegetal/citologia , RNA de Plantas/metabolismo , Arabidopsis/citologia , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Mutação , Óvulo Vegetal/fisiologia , Células Vegetais/fisiologia , Epiderme Vegetal/genética , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/metabolismo
6.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35682951

RESUMO

Pineapple (Ananas comosus (L.) Merr.) is an important tropical fruit with high economic value, and its growth and development are affected by the external environment. Drought and salt stresses are common adverse conditions that can affect crop quality and yield. WRKY transcription factors (TFs) have been demonstrated to play critical roles in plant stress response, but the function of pineapple WRKY TFs in drought and salt stress tolerance is largely unknown. In this study, a pineapple AcWRKY31 gene was cloned and characterized. AcWRKY31 is a nucleus-localized protein that has transcriptional activation activity. We observed that the panicle length and seed number of AcWRKY31 overexpression transgenic rice plants were significantly reduced compared with that in wild-type plant ZH11. RNA-seq technology was used to identify the differentially expressed genes (DEGs) between wild-type ZH11 and AcWRKY31 overexpression transgenic rice plants. In addition, ectopic overexpression of AcWRKY31 in rice and Arabidopsis resulted in plant oversensitivity to drought and salt stress. qRT-PCR analysis showed that the expression levels of abiotic stress-responsive genes were significantly decreased in the transgenic plants compared with those in the wild-type plants under drought and salt stress conditions. In summary, these results showed that ectopic overexpression of AcWRKY31 reduced drought and salt tolerance in rice and Arabidopsis and provided a candidate gene for crop variety improvement.


Assuntos
Ananas , Arabidopsis , Oryza , Ananas/genética , Ananas/metabolismo , Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142886

RESUMO

Soybean is one of the most important food crops in the world. However, with the environmental change in recent years, many environmental factors like drought, salinity, heavy metal, and disease seriously affected the growth and development of soybean, causing substantial economic losses. In this study, we screened a bZIP transcription factor gene, GmbZIP152, which is significantly induced by Sclerotinia sclerotiorum (S. sclerotiorum), phytohormones, salt-, drought-, and heavy metal stresses in soybean. We found that overexpression of GmbZIP152 in Arabidopsis (OE-GmbZIP152) enhances the resistance to S. sclerotiorum and the tolerance of salt, drought, and heavy metal stresses compared to wild-type (WT). The antioxidant enzyme related genes (including AtCAT1, AtSOD, and AtPOD1) and their enzyme activities are induced by S. sclerotiorum, salt, drought, and heavy metal stress in OE-GmbZIP152 compared to WT. Furthermore, we also found that the expression level of biotic- and abiotic-related marker genes (AtLOX6, AtACS6, AtERF1, and AtABI2, etc.) were increased in OE-GmbZIP152 compared to WT under S. sclerotiorum and abiotic stresses. Moreover, we performed a Chromatin immunoprecipitation (ChIP) assay and found that GmbZIP152 could directly bind to promoters of ABA-, JA-, ETH-, and SA-induced biotic- and abiotic-related genes in soybean. Altogether, GmbZIP152 plays an essential role in soybean response to biotic and abiotic stresses.


Assuntos
Arabidopsis , Glycine max , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Cloreto de Sódio/farmacologia , Glycine max/metabolismo , Estresse Fisiológico/genética
8.
Plant J ; 102(6): 1172-1186, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31944421

RESUMO

Angiosperm reproductive development is a complex event that includes floral organ development, male and female gametophyte formation and interaction between the male and female reproductive organs for successful fertilization. Previous studies have revealed the redundant function of ATP binding cassette subfamily G (ABCG) transporters ABCG1 and ABCG16 in pollen development, but whether they are involved in other reproductive processes is unknown. Here we show that ABCG1 and ABCG16 were not only expressed in anthers and stamen filaments but also enriched in pistil tissues, including the stigma, style, transmitting tract and ovule. We further demonstrated that pistil-expressed ABCG1 and ABCG16 promoted rapid pollen tube growth through their effects on auxin distribution and auxin flow in the pistil. Moreover, disrupted auxin homeostasis in stamen filaments was associated with defective filament elongation. Our work reveals the key functions of ABCG1 and ABCG16 in reproductive development and provides clues for identifying ABCG1 and ABCG16 substrates in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Membrana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Reprodução
9.
New Phytol ; 230(2): 737-756, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33454980

RESUMO

The signaling pathway mediated by the receptor-like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one-hybrid analysis were applied to identify ER-WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER-signaling-mediated plant immune responses.


Assuntos
Proteínas de Arabidopsis , Cromatina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal/genética , Transdução de Sinais
10.
New Phytol ; 229(1): 414-428, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32746499

RESUMO

Inflorescence architecture critically influences plant reproductive success and crop yield, and it reflects the activity of the inflorescence meristem and pedicel length. In Arabidopsis thaliana, the ERECTA (ER) signaling pathway and the SWR1 chromatin remodeling complex jointly regulate inflorescence architecture by promoting the expression of the PACLOBUTRAZOL RESISTANCE (PRE) gene family. However, how PREs regulate inflorescence architecture remains unclear. RNA-sequencing and chromatin immunoprecipitation coupled with quantitative PCR analyses were performed. Genetic interactions between HOMOLOG OF BEE2 INTERACTING WITH IBH1 (HBI1) and the SWR1-ER-MPK6 pathway in the control of inflorescence architecture were further studied. The present findings support that HBI1 functions downstream of PREs in the SWR1 and ER pathways to regulate inflorescence architecture by promoting pedicel elongation. Specifically, it binds to the promoters of the brassinosteroid (BR) biosynthesis gene CYP85A2 and a series of auxin-related genes, including auxin response factor ARF3, and promotes their expression. In turn, ARF3 can also bind to auxin signaling genes as well as CYP85A2 to activate their expression and promote pedicel elongation. Our study provides evidence that inflorescence architecture regulation by SWR1 and ER involves the HBI1 regulatory hub and its activation of both the BR and auxin hormone pathways.


Assuntos
Proteínas de Arabidopsis , Brassinosteroides , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Inflorescência/genética , Inflorescência/metabolismo , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 115(3): E526-E535, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29288215

RESUMO

Germ-line specification is essential for sexual reproduction. In the ovules of most flowering plants, only a single hypodermal cell enlarges and differentiates into a megaspore mother cell (MMC), the founder cell of the female germ-line lineage. The molecular mechanisms restricting MMC specification to a single cell remain elusive. We show that the Arabidopsis transcription factor WRKY28 is exclusively expressed in hypodermal somatic cells surrounding the MMC and is required to repress these cells from acquiring MMC-like cell identity. In this process, the SWR1 chromatin remodeling complex mediates the incorporation of the histone variant H2A.Z at the WRKY28 locus. Moreover, the cytochrome P450 gene KLU, expressed in inner integument primordia, non-cell-autonomously promotes WRKY28 expression through H2A.Z deposition at WRKY28. Taken together, our findings show how somatic cells in ovule primordia cooperatively use chromatin remodeling to restrict germ-line cell specification to a single cell.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Ligação a DNA/genética , Histonas/genética , Histonas/metabolismo , Mutação , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Componentes Aéreos da Planta/fisiologia , Raízes de Plantas/fisiologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Transcrição/genética
12.
BMC Genomics ; 21(1): 72, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31973690

RESUMO

BACKGROUND: Calcium-dependent protein kinase (CPK) is one of the main Ca2+ combined protein kinase that play significant roles in plant growth, development and response to multiple stresses. Despite an important member of the stress responsive gene family, little is known about the evolutionary history and expression patterns of CPK genes in pineapple. RESULTS: Herein, we identified and characterized 17 AcoCPK genes from pineapple genome, which were unevenly distributed across eight chromosomes. Based on the gene structure and phylogenetic tree analyses, AcoCPKs were divided into four groups with conserved domain. Synteny analysis identified 7 segmental duplication events of AcoCPKs and 5 syntenic blocks of CPK genes between pineapple and Arabidopsis, and 8 between pineapple and rice. Expression pattern of different tissues and development stages suggested that several genes are involved in the functional development of plants. Different expression levels under various abiotic stresses also indicated that the CPK family underwent functional divergence during long-term evolution. AcoCPK1, AcoCPK3 and AcoCPK6, which were repressed by the abiotic stresses, were shown to be function in regulating pathogen resistance. CONCLUSIONS: 17 AcoCPK genes from pineapple genome were identified. Our analyses provide an important foundation for understanding the potential roles of AcoCPKs in regulating pineapple response to biotic and abiotic stresses.


Assuntos
Ananas/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Família Multigênica , Proteínas Quinases/genética , Ananas/classificação , Mapeamento Cromossômico , Cromossomos de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Fenótipo , Filogenia , Desenvolvimento Vegetal/genética , Sintenia
13.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096644

RESUMO

Soybean (Glycine max), as an important oilseed crop, is constantly threatened by abiotic stress, including that caused by salinity and drought. bZIP transcription factors (TFs) are one of the largest TF families and have been shown to be associated with various environmental-stress tolerances among species; however, their function in abiotic-stress response in soybean remains poorly understood. Here, we characterized the roles of soybean transcription factor GmbZIP15 in response to abiotic stresses. The transcript level of GmbZIP15 was suppressed under salt- and drought-stress conditions. Overexpression of GmbZIP15 in soybean resulted in hypersensitivity to abiotic stress compared with wild-type (WT) plants, which was associated with lower transcript levels of stress-responsive genes involved in both abscisic acid (ABA)-dependent and ABA-independent pathways, defective stomatal aperture regulation, and reduced antioxidant enzyme activities. Furthermore, plants expressing a functional repressor form of GmbZIP15 exhibited drought-stress resistance similar to WT. RNA-seq and qRT-PCR analyses revealed that GmbZIP15 positively regulates GmSAHH1 expression and negatively regulates GmWRKY12 and GmABF1 expression in response to abiotic stress. Overall, these data indicate that GmbZIP15 functions as a negative regulator in response to salt and drought stresses.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Glycine max/fisiologia , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Desidratação/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Glycine max/genética , Estresse Fisiológico/genética
14.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630201

RESUMO

The basic leucine zipper (bZIP) is a plant-specific transcription factor family that plays crucial roles in response to biotic and abiotic stresses. However, little is known about the function of bZIP genes in soybean. In this study, we isolated a bZIP gene, GmbZIP19, from soybean. A subcellular localization study of GmbZIP19 revealed its nucleus localization. We showed that GmbZIP19 expression was significantly induced by ABA (abscisic acid), JA (jasmonic acid) and SA (salicylic acid), but reduced under salt and drought stress conditions. Further, GmbZIP19 overexpression Arabidopsis lines showed increased resistance to S. sclerotiorum and Pseudomonas syringae associated with upregulated ABA-, JA-, ETH- (ethephon-)and SA-induced marker genes expression, but exhibited sensitivity to salt and drought stresses in association with destroyed stomatal closure and downregulated the salt and drought stresses marker genes' expression. We generated a soybean transient GmbZIP19 overexpression line, performed a Chromatin immunoprecipitation assay and found that GmbZIP19 bound to promoters of ABA-, JA-, ETH-, and SA-induced marker genes in soybean. The yeast one-hybrid verified the combination. The current study suggested that GmbZIP19 is a positive regulator of pathogen resistance and a negative regulator of salt and drought stress tolerance.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Glycine max/genética , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ciclopentanos/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Salicílico/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo
15.
New Phytol ; 221(1): 295-308, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959895

RESUMO

The accumulation of anthocyanins in response to specific developmental cues or environmental conditions plays a vital role in plant development and protection against stresses. Extensive research has examined the regulation of anthocyanin biosynthetic genes at the transcriptional and post-transcriptional levels, but the role of chromatin in this regulation remains unknown. Chromatin immunoprecipitation and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses were performed. Genetic interactions between trimethylation of lysine 4 on histone H3 (H3K4me3) and the chromatin remodeling complex SWR1 in the control of anthocyanin biosynthesis were further studied. In this study, we provide evidence that a conserved histone H2 variant, H2A.Z, negatively regulates anthocyanin accumulation through deposition at a set of anthocyanin biosynthetic genes and consequently represses their expression in Arabidopsis thaliana. Our data indicate that the accumulation of anthocyanin in H2A.Z deposition-deficient mutants is associated with increased H3K4me3, which is required for promotion of the expression of anthocyanin biosynthetic genes. We further provide evidence that H3K4me3 in anthocyanin biosynthetic genes is negatively associated with the presence of H2A.Z. Our results reveal an antagonistic relationship between H2A.Z and H3K4me3 in the regulation of the expression of anthocyanin biosynthesis genes, adding another layer of regulation to anthocyanin biosynthesis genes and highlighting the role of chromatin in gene regulation.


Assuntos
Antocianinas/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Epigênese Genética , Histonas/metabolismo , Antocianinas/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Secas , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Histonas/genética , Luz , Mutação , Estresse Fisiológico/genética
16.
BMC Genomics ; 19(1): 159, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29471787

RESUMO

BACKGROUND: Soybean, a major legume crop native to East Asia, presents a wealth of resources for utilization. The basic leucine zipper (bZIP) transcription factors play important roles in various biological processes including developmental regulation and responses to environmental stress stimuli. Currently, little information is available regarding the bZIP family in the legume crop soybean. RESULTS: Using a genome-wide domain analysis, we identified 160 GmbZIP genes in soybean genome, named from GmbZIP1 to GmbZIP160. These 160GmbZIP genes, distributed unevenly across 20 chromosomes, were grouped into 12 subfamilies based on phylogenetic analysis. Gene structure and conserved motif analyses showed that GmbZIP within the same subfamily shared similar intron-exon organizations and motif composition. Syntenic and phylogenetic analyses identified 40 Arabidopsis bZIP genes and 83 soybean bZIP genes as orthologs. By investigating the expression profiling of GmbZIP in different tissues and under drought and flooding stresses, we showed that a majority of GmbZIP (83.44%) exhibited transcript abundance in all examined tissues and 75.6% displayed transcript changes after drought and flooding treatment, suggesting that GmbZIP may play a broad role in soybean development and response to water stress. CONCLUSIONS: One hundred sixty GmbZIP genes were identified in soybean genome. Our results provide insights for the evolutionary history of bZIP family in soybean and shed light on future studies on the function of bZIP genes in response to water stress in soybean.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Proteínas de Plantas/genética , Estresse Fisiológico
17.
New Phytol ; 214(4): 1579-1596, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28295392

RESUMO

Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/metabolismo , Inflorescência/anatomia & histologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Montagem e Desmontagem da Cromatina/fisiologia , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Inflorescência/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Nucleossomos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Fatores de Transcrição/genética
18.
J Exp Bot ; 67(8): 2439-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26936828

RESUMO

CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven ß-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH.


Assuntos
Capsicum/microbiologia , Retroalimentação Fisiológica , Temperatura Alta , Umidade , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/fisiologia , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Bases , Biomarcadores/metabolismo , Capsicum/efeitos dos fármacos , Capsicum/genética , Capsicum/imunologia , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Clonagem Molecular , Ciclopentanos/farmacologia , Etilenos/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Oxilipinas/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Análise de Sequência de Proteína , Transcrição Gênica/efeitos dos fármacos
19.
Plant J ; 80(4): 615-28, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182975

RESUMO

Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Meiose , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/genética , Recombinases Rec A/genética , Pareamento Cromossômico , Cromossomos de Plantas , Gametogênese Vegetal , Perfilação da Expressão Gênica , Mutação , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes
20.
J Exp Bot ; 66(11): 3163-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873659

RESUMO

High temperature (HT), high humidity (HH), and pathogen infection often co-occur and negatively affect plant growth. However, these stress factors and plant responses are generally studied in isolation. The mechanisms of synergistic responses to combined stresses are poorly understood. We isolated the subgroup IIb WRKY family member CaWRKY6 from Capsicum annuum and performed quantitative real-time PCR analysis. CaWRKY6 expression was upregulated by individual or simultaneous treatment with HT, HH, combined HT and HH (HTHH), and Ralstonia solanacearum inoculation, and responded to exogenous application of jasmonic acid (JA), ethephon, and abscisic acid (ABA). Virus-induced gene silencing of CaWRKY6 enhanced pepper plant susceptibility to R. solanacearum and HTHH, and downregulated the hypersensitive response (HR), JA-, ethylene (ET)-, and ABA-induced marker gene expression, and thermotolerance-associated expression of CaHSP24, ER-small CaSHP, and Chl-small CaHSP. CaWRKY6 overexpression in pepper attenuated the HTHH-induced suppression of resistance to R. solanacearum infection. CaWRKY6 bound to and activated the CaWRKY40 promoter in planta, which is a pepper WRKY that regulates heat-stress tolerance and R. solanacearum resistance. CaWRKY40 silencing significantly blocked HR-induced cell death and reduced transcriptional expression of CaWRKY40. These data suggest that CaWRKY6 is a positive regulator of R. solanacearum resistance and heat-stress tolerance, which occurs in part by activating CaWRKY40.


Assuntos
Capsicum/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/fisiologia , Ácido Abscísico/farmacologia , Sequência de Bases , Capsicum/imunologia , Capsicum/microbiologia , Ciclopentanos/farmacologia , Resistência à Doença , Etilenos/farmacologia , Temperatura Alta , Umidade , Dados de Sequência Molecular , Compostos Organofosforados/farmacologia , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa