Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640133

RESUMO

This manuscript details the application of a profluorescent nitroxide (PFN) for the online quantification of radical concentrations on particulate matter (PM) using an improved Particle Into Nitroxide Quencher (PINQ). A miniature flow-through fluorimeter developed specifically for use with the 9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) probe was integrated into the PINQ, along with automated gas phase corrections through periodic high efficiency particle arrestor (HEPA) filtering. The resulting instrument is capable of unattended sampling and was operated with a minimum time resolution of 2.5 min. Details of the fluorimeter design and examples of data processing are provided, and results from a chamber study of side-stream cigarette smoke and ambient monitoring campaign in Guangzhou, China are presented. Primary cigarette smoke was shown to have both short-lived (t1/2 = 27 min) and long-lived (t1/2 = indefinite) PM-bound reactive oxygen species (ROS) components which had previously only been observed in secondary organic aerosol (SOA).

2.
Sci Total Environ ; 919: 170862, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350571

RESUMO

Volatile organic compounds (VOCs), as common precursors of ozone (O3) and fine particulate matter (PM2.5), are a focus of air pollution prevention and control. Furthermore, with the rapid development of industry, industrial sources have become the largest source of anthropogenic VOCs emissions, leading to economic development while causing great harm to the environment. It is becoming meaningful to efficiently predict the future total volatile organic compounds (TVOC) pollution conditions in chemical industrial parks (CIPs), which can assist managers in carrying out corporate emission management in advance. In this study, TVOC monitoring data and meteorological data from January 1, 2022, to December 31, 2022, were used to innovatively construct the TVOC pollution index. This index comprehensively considers the atmospheric stability and localized horizontal diffusion conditions and can quickly and accurately predict the variations in the TVOC in a CIP in the next 7 days. In addition, we used synoptic weather patterns and backward trajectory analysis to explore the mechanism of VOCs pollution formation in a CIP. The results show that the combined influences of a westerly wind pattern, temperatures above 30 °C, a subtropical high pressure system, more upwind pollutants, and the horizontal and vertical diffusion conditions in the CIP were unfavorable, leading to VOCs pollution.

3.
Environ Pollut ; 316(Pt 1): 120539, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328278

RESUMO

Marine atmospheric aerosols impact the global climate and biogeochemical cycles. However, how the composition, sources, and aging of these aerosols affect the above processes has not been thoroughly studied. Here, we conducted ship-based measurements in the northern South China Sea to investigate the chemical composition and aging of aerosols from various sources during the summer of 2019. Separate measurements were conducted at the bow (marine environment) and stern (cooking, smoking, and engine exhaust) of the ship. Source apportionment of organic aerosols (OAs) was conducted using positive matrix factorization (PMF) and trajectory models. The results showed that ship exhaust and coastal submicron particles were composed of comparable sulfate and organic fractions (both approximately 43%), distinct from the sulfate-dominated particles in the marine atmosphere (52-77%). PMF using the multilinear engine-2 solver identified five factors for the stern sampling period: hydrocarbon-like OA (HOA-I, 9%), slightly oxidized HOA (HOA-II, 25%), cooking OA (COA, 13%), cigarette smoke OA (CSOA, 4%), and low-volatility oxygenated OA (LV-OOA, 49%). The primary OAs (HOA-I/II + COA + CSOA), derived mostly from direct ship-related emissions, contributed to approximately half of the OAs, whereas the contribution from the highly aged marine atmosphere was only 20%. Notably, certain living-related emissions (i.e., COA and CSOA), which were often neglected in previous studies, might represent a considerable contribution to OA emissions from the ship. Four factors were identified for the bow sampling periods: HOA (13%), biomass burning OA (BBOA, 9%), semi-volatile OOA (7%), and LV-OOA (71%). The BBOAs from the Indo-China and Malay peninsulas were aged, converted to secondary organic aerosols (SOAs) during transport, and influenced by the combined photo-oxidation and liquid-phase reactions, indicating a substantial impact of BB on SOA formation. Our study highlights the influence of ship and inland emissions and their aging during transport on marine atmospheric aerosols.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Navios , Sulfatos/análise , Emissões de Veículos/análise
4.
Environ Pollut ; 289: 117948, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426195

RESUMO

Marine atmospheric aerosols play important roles in the global radiation balance and climate change. Hence, measuring physiochemical aerosol properties is essential to better understand their formation, aging processes, and source origins. However, high temporal resolution measurements of submicron particles are currently scarce in the northern South China Sea (SCS). In this study, we conducted a ship-based cruise campaign with a scanning mobility particle sizer and an online time of flight aerosol chemical speciation monitor to measure the particle number size distribution (PNSD) and the chemical composition of submicron particles over the northern SCS during summer 2018. The mean concentration of non-refractory submicron particulate matter (NR-PM1) was generally 9.11 ± 4.86 µg m-3; sulfate was the most abundant component, followed by organics, ammonium, nitrate, and chloride. Positive matrix factorization (PMF) analysis was applied to the PNSD (size PMF) and organic aerosols (OA PMF) and further investigated the source apportionment of the submicron particles. The size PMF identified four factors, including ship exhaust, ship influencing marine primary, continent affected marine secondary, and mixed accumulation aerosols. The most abundant particles in the number concentration were associated with ship emissions, which accounted for approximately 44 %. The submicron organic aerosols were highly oxidized and composed of low-volatility oxygenated OA (LV-OOA, 68 %), semi-volatile OOA (SV-OOA, 21 %), and hydrocarbon-like OA (HOA, 11 %). The backward trajectory of air masses showed that the northern SCS was most frequently (64.7 %) influenced by air masses from the Indo-Chinese Peninsula (ICP) during the campaign, implying that pollutants from ICP have a significant impact on the atmosphere of the northern SCS during summer. Thus, in situ ship-based cruise measurements can provide valuable data on the physiochemical characteristics of marine atmospheric aerosols to better understand their source origins.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Nitratos , Material Particulado/análise
5.
Huan Jing Ke Xue ; 40(2): 525-531, 2019 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628313

RESUMO

The aerosol particle number size distribution(PNSD) is of great importance in calculating atmospheric radiation and optics. It can effectively supplement the inadequate observation of PNSD using the widely known aerosol mass concentration (PM2.5) measurement to invert PNSD. It would be valuable for research that needs PNSD data, like atmospheric visibility calculation. This paper created a PNSD inversed method based on the statistics and parameterization of the dry aerosol PM2.5 and PNSD dataset from the Guangzhou urban site's simultaneous measurements from November 2014 to January 2015. The inversed results appeared good in the accumulation mode, whereas more differences showed with higher PM2.5 loading. The applicability and stability of this method makes it preferable. It would provide advanced technical support for the visibility calculation and application in PRD.

6.
Sci Total Environ ; 627: 1560-1571, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30857117

RESUMO

Both the effects of aerosol hygroscopicity and mixing state on aerosol optical properties were analyzed using ground-based measurements and a Mie model in this study. The sized-resolved particle hygroscopic growth factor at RH = 90% (Gf(90%)) and the enhancement factor for the scattering coefficients (f(RH)sp) were measured by a self-constructed Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) and two nephelometers in parallel (PNEPs) respectively from 22nd February to 18th March 2014 in the Pearl River Delta, China. In addition, the particle number size distribution (PNSD) and BC mass concentration (MBC) were measured simultaneously. During the observation period, the f(RH)sp increased sharply along with increasing RH (40%-85%) and the value of f(80%)sp was 1.77 ±â€¯0.18. The mean Gf(90%) for all particles are 1.44 (80 nm), 1.48 (110 nm), 1.52 (150 nm) and 1.55 (200 nm), and the mean Gf(90%) for more-hygroscopic particles are 1.58 (80 nm), 1.63 (110 nm), 1.66 (150 nm) and 1.67 (200 nm) respectively. Based on Gf, PNSD and MBC, the enhancement factor of the aerosol optical properties (extinction (f(RH)ep), scattering (f(RH)sp), backscattering (f(RH)hbsp), absorption (f(RH)absp), and hemispheric backscatter fraction (f(RH)hbsp)) were calculated under three aerosol mixing state assumptions. The results show that the calculated f(80%)sp values agreed well with the ones measured by PNEPs, illustrating that the Gf size distribution fittings are reasonable. The f(RH)ep, f(RH)sp and f(RH)hbsp increased along with increasing RH for three mixtures, while f(RH)HBF decreased. The f(RH)absp increased for the homogenously internal mixture, but remained stable for the external mixture. For the core-shell mixture, the f(RH)absp increased from RH = 0 to 75% and then decreased, due to a decrease of light entering the BC core. The enhancement factor of aerosol direct radiative forcing (f(RH)Fr) increased sharply as the RH elevated for the external mixing state. However, f(RH)Fr increased or decreased along with the elevated RH for the homogenously internal mixture and the core-shell mixture depending on initial value of the aerosol direct radiative forcing (∆Fr) in a dry condition.

7.
Sci Total Environ ; 579: 1822-1830, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27939194

RESUMO

Aerosol liquid water content (ALWC) has an important effect on atmospheric visibility as well as heterogeneous chemical reactions. In this paper, we used the data size-resolved particle hygroscopic growth factor, and particle number size distribution (PNSD) obtained from H-TDMA and SMPS to compute ALWC at the Guangzhou Panyu site from the winter of 2014 and the spring of 2015. The corresponding results were relatively consistent with the trend for ALWCISO calculated from the ISORROPIA II thermodynamic equilibrium model based on the measurement of aerosol water-soluble ionic compositions obtained from MARGA, with a linear fit yielding an R2 value of 0.76. The fact that ALWCHTDMA was somewhat higher than ALWCISO at low RH values was at least partially attributable to the fact that effects resulting from organic matter hygroscopicity were not taken into account when computing ALWCISO. In sensitivity testing, ambient relative humidity, PNSD and particle hygroscopicity were all found to affect ALWC, in that order. Particles of different modes made different contributions to ALWC with the contributions of nuclear, Aitken, accumulation and coarse modes assessed at <1%, 3%, 85% and 12%, respectively, indicating that the contribution of accumulation mode particles to ALWC dominated among all the aerosol particle modes. During clean processes, decreases in relative humidity and PM2.5 both resulted in a decrease in ALWC. During the pollution processes, calm winds caused local particle accumulation, with ALWC increasing as RH increased. Intraday trends in ALWC and relative humidity were consistent, with minimum mean values observed in the afternoon due to low ambient relative humidity inhibiting an increase in ALWC. However, diurnal variation of aerosol hygroscopicity and ALWC tended to be somewhat anti-correlated, indicating that diurnal changes in aerosol hygroscopicity are not a primary factor resulting in ambient AWLC changes.

8.
Sci Total Environ ; 569-570: 1149-1158, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27395081

RESUMO

Light scattering of aerosols depends on ambient relative humidity (RH) since hygroscopic particles absorb significant water at high RH, and this results in low visibility. This paper used custom-made parallel nephelometers (PNEPs) to measure aerosol light scattering enhancement factor ƒ(RH), and utilized data including visibility, PM2.5, black carbon, water-soluble ions mass concentrations and surface meteorological parameters, in conjunction with background weather conditions, to analyze a haze event in Guangzhou during 8th-15th Dec. 2013. Unfavorable weather conditions, such as high RH and low wind speed, were observed during the haze event. The hourly average mass concentration of PM2.5 was 127µg/m(3), with concentration of 192.4µg/m(3) on 9th and 196µg/m(3) on 13th. The ƒ(RH) did not exhibit significant changes during this haze process, with value of ƒ(80%)=1.58±0.07. Although the mass fraction of water-soluble ions to PM2.5 decreased after 12th Dec., the aerosol hygroscopicity might not have changed significantly since the mass fraction of nitrate became more dominant, which has stronger ability to take up water. The best-fitted parameterized function for ƒ(RH) is ƒ(RH)=0.731+0.1375∗(1-RH/100)(-1)+0.00719∗(1-RH/100)(-2). Combining the fixed parameterization of ƒ(RH) above, the visibility was calculated with the measured light scattering and absorption coefficient of particles and gas under dry condition, as well as ambient RH. The predicted visibility range agrees well with the measurements without precipitation. Using ISORROPIA II model, the calculated aerosol liquid water content (ALWC) at ambient RH varied consistently with the PM2.5 under lower RH, while it was more influenced by high RH. This work also show that high RH accompanied with precipitation will enhance aerosol hygroscopic growth effect, leading to further visibility degradation, even if PM2.5 mass decreased due to precipitation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa