Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(20): 9204-9211, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38701353

RESUMO

In this work, a novel organodiphosphate-containing inorganic-organic hybrid polyoxoniobate (PONb) ring {(PO3CH2CH2PO3H)4Nb8O16}4- (Nb8P8) has been achieved by a one-pot hydrothermal method. The ring is constructed from a tetragonal {Nb8O36} motif and four {PO3CH2CH2PO3H} ligands. Interestingly, Nb8P8 can be joined together via K-H2O clusters {K2(H2O)4(OH)2} to form one-dimensional chains {[K2(H2O)4(OH)2]Nb8P8}n and further linked by {Cu(en)2}2+ (en = ethylenediamine) complexes, resulting in a three-dimensional supramolecular framework {[Cu(en)2]2[K2(H2O)4(OH)2]Nb8P8}·3en·H2O (1). 1 exhibits good chemical and thermal stability and has a high water vapor adsorption capacity of ≤224 cm3 g-1 (22.71 mol·mol-1) at 298 K, outperforming most of the known polyoxometalate-based materials. Impedance measurements prove that 1 can transfer protons with moderate conductivity. This study not only contributes to the structural diversity of organodiphosphate-containing PONbs and PONb rings but also provides a reference for the development of PONb-based materials with unique performance.

2.
Angew Chem Int Ed Engl ; 63(29): e202404314, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712987

RESUMO

Atomically precise low-nuclearity (n<10) silver nanoclusters (AgNCs) have garnered significant interest due to their size-dependent optical properties and diverse applications. However, their synthesis has remained challenging, primarily due to their inherent instability. The present study introduces a new feasible approach for clustering silver ions utilizing highly negative and redox-inert polyoxoniobates (PONbs) as all-inorganic ligands. This strategy not only enables the creation of novel Ag-PONb composite nanoclusters but also facilitates the synthesis of stable low-nuclearity AgNCs. Using this method, we have successfully synthesized a small octanuclear rhombic [Ag8]6+ AgNC stabilized by six highly negative [LiNb27O75]14- polyoxoanions. This marks the first PONb-protected superatomic AgNC, designated as {Ag8@(LiNb27O75)6} (Ag8@Nb162), with an aesthetically spherical core-shell structure. The crystalline Ag8@Nb162 is stable under ambient conditions, What's more, it is water-soluble and able to maintain its molecular cluster structure intact in water. Further, the stable small [Ag8]6+ AgNC has interesting temperature- and pH-dependent reversible fluorescence response, based on which a multiple optical encryption mode for anti-counterfeit technology was demonstrated. This work offers a promising avenue for the synthesis of fascinating and stable PONb-protected AgNCs and sheds light on the development of new-type optical functional materials.

3.
Inorg Chem ; 62(26): 10044-10048, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37338532

RESUMO

A unique heteropolyoxotantalate (hetero-POTa) cluster [P2O7Ta5O14]7- (P2Ta5) was first developed using pyrophosphate as a key to open the ultrastable skeleton of the classical Lindqvist-type [Ta6O19]8- precursor. The P2Ta5 cluster can serve as a general and flexible secondary building unit to create a family of brand-new multidimensional POTa architectures. This work not only promotes the limited structural diversity of hetero-POTa but also provides a practical strategy for new extended POTa architectures.

4.
Angew Chem Int Ed Engl ; 62(46): e202312706, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37793987

RESUMO

Inspired by the metal-oxo cluster structural feature and charge separation behaviour of the oxygen evolving center (OEC) in photosystem II (PS-II) under photoirradiation, a new crystalline photochromic polyoxomolybdate, MV2 [ß-Mo8 O26 ] (1, MV=methyl viologen cation), is designed as a biomimetic oxygen evolution reaction (OER) catalyst in neutral electrolytes. After photoinduced electron transfer (PIET) with colour change from colourless to grey, it remains in an ultra-stable charge-separated state over a year under ambient conditions. The observed overpotential at 10 mA ⋅ cm-2 and Tafel slope decrease by 49 mV and 62.8 mV ⋅ dec-1 after coloration, respectively. The outstanding OER performance of the coloured state in neutral electrolytes even outperforms the commercial RuO2 benchmark. Experimental and theoretical studies show that oxygen holes within polyanions after irradiation serve as sites for enhancing direct O-O coupling, thus effectively promoting OER. This is the first successful application of electron-transfer photochromism to realize OER activity gain.

5.
Chem Sci ; 15(31): 12543-12549, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39118619

RESUMO

Nature seems to favor the formation of closed anion-templated silver clusters. How precisely to create non-closed sliver clusters remains an interesting challenge. In this work, we propose that the use of transition-metal-coordination-cluster substituted polyoxometalates (TMCC-substituted POMs) as templates is an effective synthetic strategy for creating the non-closed silver clusters, as demonstrated by the obtainment of four types of rare non-closed silver cluster species of Ag38-TM (TM = Co, Ni or Zn), Ag37-Zn, {Ag37-Zn}∞ and Ag36-TM (TM = Co, Ni). The idea of the strategy is to employ the TMCC-substituted POMs containing cluster modules with different bond interactions with Ag+ ions as templates to guide the formation of the non-closed silver clusters. For example, TMCC-substituted POM clusters are used as templates in this work, which contain POM modules that can coordinate with the Ag+ ions and TMCC moieties that are difficult to coordinate with the Ag+ ions, leading to the Ag+ ions being unable to form closed clusters around TMCC-substituted POM templates. The work demonstrates a promising approach to developing intriguing and unexplored non-closed silver clusters.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa