RESUMO
KEY MESSAGE: The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.
Assuntos
Cercospora , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Cercospora/genética , Melhoramento Vegetal , Fenótipo , Haploidia , Genótipo , Genes de PlantasRESUMO
Neurotransmission signaling is a highly conserved system attributed to various regulatory events. The excitatory and inhibitory neurotransmitter systems have been extensively studied, and their role in neuronal cell proliferation, synaptogenesis and dendrite formation in the adult brain is well established. Recent research has shown that epigenetic regulation plays a crucial role in mediating the expression of key genes associated with neurotransmitter pathways, including neurotransmitter receptor and transporter genes. The dysregulation of these genes has been linked to a range of neurological disorders such as attention-deficit/hyperactivity disorder, Parkinson's disease and schizophrenia. This article focuses on epigenetic regulatory mechanisms that control the expression of genes associated with four major chemical carriers in the brain: dopamine (DA), Gamma-aminobutyric acid (GABA), glutamate and serotonin. Additionally, we explore how aberrant epigenetic regulation of these genes can contribute to the pathogenesis of relevant neurological disorders. By targeting the epigenetic mechanisms that control neurotransmitter gene expression, there is a promising opportunity to advance the development of more effective treatments for neurological disorders with the potential to significantly improve the quality of life of individuals impacted by these conditions.
Assuntos
Epigênese Genética , Doenças do Sistema Nervoso , Humanos , Qualidade de Vida , Doenças do Sistema Nervoso/genética , Transdução de Sinais/genética , Neurotransmissores/metabolismoRESUMO
BACKGROUND: The error-proneness in the preanalytical and postanalytical stages is higher than that in the analytical stage of the total testing process. However, preanalytical and postanalytical quality management has not received enough attention in medical laboratory education and tests in clinical biochemistry courses. METHODS/APPROACH: Clinical biochemistry teaching program aim to improve students' awareness and ability of quality management according to international organization for standardization 15,189 requirements. We designed a student-centred laboratory training program, according to case-based learning that included 4 stages: "establish an overall testing process based on the patient's clinical indicator, clarify principles, improve operational skills, and review process and continuous improvement". The program was implemented in our college during the winter semesters of 2019 and 2020. A total of 185 undergraduate students majoring in medical laboratory science participated in the program as a test group, and the other 172 students were set up as the control group and adopted the conventional method. The participants were asked to finish an online survey to evaluate the class at the end. RESULTS/OUTCOMES: The test group had significantly better examination scores not only in experimental operational skills (89.27 ± 7.16 vs. 77.51 ± 4.72, p < 0.05 in 2019 grade, 90.31 ± 5.35 vs. 72.87 ± 8.41 in 2020 grade) but also in total examination (83.47 ± 6.16 vs. 68.90 ± 5.86 in 2019 grade, 82.42 ± 5.72 vs. 69.55 ± 7.54 in 2020 grade) than the control group. The results of the questionnaire survey revealed that the students in the test group better achieved classroom goals than those in the control group (all p < 0.05). CONCLUSIONS: The new student-centred laboratory training program based on case-based learning in clinical biochemistry is an effective and acceptable strategy compared with the conventional training program.
Assuntos
Educação Médica , Estudantes de Medicina , Humanos , Estudantes , Bioquímica/educação , Escolaridade , Competência Clínica , EnsinoRESUMO
A model has been proposed in which JIL-1 kinase-mediated H3S10 and H2Av phosphorylation is required for transcriptional elongation and heat shock-induced chromatin decondensation. However, here we show that although H3S10 phosphorylation is indeed compromised in the H2Av null mutant, chromatin decondensation at heat shock loci is unaffected in the absence of JIL-1 as well as of H2Av and that there is no discernable decrease in the elongating form of RNA polymerase II in either mutant. Furthermore, mRNA for the major heat shock protein Hsp70 is transcribed at robust levels in both H2Av and JIL-1 null mutants. Using a different chromatin remodeling paradigm that is JIL-1 dependent, we provide evidence that ectopic tethering of JIL-1 and subsequent H3S10 phosphorylation recruits PARP-1 to the remodeling site independently of H2Av phosphorylation. These data strongly suggest that H2Av or H3S10 phosphorylation by JIL-1 is not required for chromatin decondensation or transcriptional elongation in Drosophila.
Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Fosfosserina/metabolismo , Elongação da Transcrição Genética , Animais , Eucromatina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Térmico/genética , Immunoblotting , Imuno-Histoquímica , Óperon Lac/genética , Mutação/genética , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Cromossomos Politênicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , TransgenesRESUMO
'Candidatus Phytoplasma pini'-related strain MDPP, the reference strain of subgroup 16SrXXI-B, is a pathogen associated with witches' broom disease of Pinus spp. in North America. Here, we report the first draft genome sequence of 'Ca. Phytoplasma pini' strain MDPP, which consists of 474,136 bases, with a G + C content of 22.22%. This information will facilitate comparative genomics of gymnosperm-infecting phytoplasmas.
Assuntos
Cycadopsida , Phytoplasma , DNA Bacteriano , Genômica , América do Norte , Filogenia , Doenças das Plantas , Pirrolidinas , RNA Ribossômico 16SRESUMO
'Candidatus Liberibacter asiaticus' is the unculturable causative agent of citrus huanglongbing disease. Here, we report the first citrus root metagenome sequence containing the draft genome of 'Ca. L. asiaticus' strain AHCA17, obtained from a pummelo tree in California. The assembled genome was 1.2 Mbp and resulted in 37 contigs (N50 = 158.7 kbp) containing 1,057 predicted open reading frames and 45 RNA-coding genes. This draft genome will provide a valuable resource in further study of 'Ca. L. asiaticus' genome diversity and pathogen epidemiology.
Assuntos
Citrus , Rhizobiaceae , California , Doenças das PlantasRESUMO
TORC1 is a master regulator of metabolism in eukaryotes that responds to multiple upstream signaling pathways. The GATOR complex is a newly defined upstream regulator of TORC1 that contains two sub-complexes, GATOR1, which inhibits TORC1 activity in response to amino acid starvation and GATOR2, which opposes the activity of GATOR1. While the GATOR1 complex has been implicated in a wide array of human pathologies including cancer and hereditary forms of epilepsy, the in vivo relevance of the GATOR2 complex remains poorly understood in metazoans. Here we define the in vivo role of the GATOR2 component Wdr24 in Drosophila. Using a combination of genetic, biochemical, and cell biological techniques we demonstrate that Wdr24 has both TORC1 dependent and independent functions in the regulation of cellular metabolism. Through the characterization of a null allele, we show that Wdr24 is a critical effector of the GATOR2 complex that promotes the robust activation of TORC1 and cellular growth in a broad array of Drosophila tissues. Additionally, epistasis analysis between wdr24 and genes that encode components of the GATOR1 complex revealed that Wdr24 has a second critical function, the TORC1 independent regulation of lysosome dynamics and autophagic flux. Notably, we find that two additional members of the GATOR2 complex, Mio and Seh1, also have a TORC1 independent role in the regulation of lysosome function. These findings represent a surprising and previously unrecognized function of GATOR2 complex components in the regulation of lysosomes. Consistent with our findings in Drosophila, through the characterization of a wdr24-/- knockout HeLa cell line we determined that Wdr24 promotes lysosome acidification and autophagic flux in mammalian cells. Taken together our data support the model that Wdr24 is a key effector of the GATOR2 complex, required for both TORC1 activation and the TORC1 independent regulation of lysosomes.
Assuntos
Proteínas de Drosophila/genética , Lisossomos/genética , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas/genética , Serina-Treonina Quinases TOR/genética , Animais , Proteínas de Ciclo Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Epistasia Genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismoRESUMO
OBJECTIVES: Although delayed parenthood has been linked to various adverse health outcomes in offspring, little attention has been given to the relationship between an increased parental age at childbirth and fat distribution in offspring. We aimed to determine the relationship between parental age at childbirth and body fat partitioning in Chinese children. METHODS: A total of 463 children (mean age, 8 years; 43% female) were recruited. Dual-energy X-ray absorptiometry was used to determine the fat mass (FM) and percentage of fat mass (%FM) in various areas of the body. Weight and height were measured. The body mass index (BMI) and fat mass index (FMI) were calculated. A questionnaire was used to collect information about parental variables and other confounders. RESULTS: Multiple linear regression analyses suggested that for each additional year of maternal age at delivery, the BMI, FMI, and FM at whole-body, trunk, android, gynoid, and appendicular region increased by 0.115 kg/m2 , 0.076 kg/m2 ; 128.4 g, 57.71 g, 10.96 g, 25.07 g, and 67.88 g, respectively, after adjusting for covariates (P = .002-.017). In the analysis of covariance, children of mothers aged ≥31 years exhibited higher BMI, FMI, total-body and segmental FM, compared to those of mothers aged ≤25 years (P-trend = 0.002-0.017). Similar tendencies were also observed for the %FM (P-trend = 0.002-0.017). However, there was no significant relationship between paternal age at childbirth and any of the body fat measures in children. CONCLUSIONS: An increasing maternal age at childbirth was associated with increased body fat accumulation in offspring, whereas paternal age at childbirth appeared to have no such association.
Assuntos
Distribuição da Gordura Corporal/estatística & dados numéricos , Pai/estatística & dados numéricos , Idade Materna , Mães/estatística & dados numéricos , Idade Paterna , Absorciometria de Fóton , Adulto , Fatores Etários , Índice de Massa Corporal , Criança , China , Feminino , Humanos , Masculino , Parto , Adulto JovemRESUMO
In single-cell eukaryotes the pathways that monitor nutrient availability are central to initiating the meiotic program and gametogenesis. In Saccharomyces cerevisiae an essential step in the transition to the meiotic cycle is the down-regulation of the nutrient-sensitive target of rapamycin complex 1 (TORC1) by the increased minichromosome loss 1/ GTPase-activating proteins toward Rags 1 (Iml1/GATOR1) complex in response to amino acid starvation. How metabolic inputs influence early meiotic progression and gametogenesis remains poorly understood in metazoans. Here we define opposing functions for the TORC1 regulatory complexes Iml1/GATOR1 and GATOR2 during Drosophila oogenesis. We demonstrate that, as is observed in yeast, the Iml1/GATOR1 complex inhibits TORC1 activity to slow cellular metabolism and drive the mitotic/meiotic transition in developing ovarian cysts. In iml1 germline depletions, ovarian cysts undergo an extra mitotic division before meiotic entry. The TORC1 inhibitor rapamycin can suppress this extra mitotic division. Thus, high TORC1 activity delays the mitotic/meiotic transition. Conversely, mutations in Tor, which encodes the catalytic subunit of the TORC1 complex, result in premature meiotic entry. Later in oogenesis, the GATOR2 components Mio and Seh1 are required to oppose Iml1/GATOR1 activity to prevent the constitutive inhibition of TORC1 and a block to oocyte growth and development. To our knowledge, these studies represent the first examination of the regulatory relationship between the Iml1/GATOR1 and GATOR2 complexes within the context of a multicellular organism. Our data imply that the central role of the Iml1/GATOR1 complex in the regulation of TORC1 activity in the early meiotic cycle has been conserved from single cell to multicellular organisms.
Assuntos
Proteínas de Drosophila/metabolismo , Meiose/fisiologia , Oócitos/metabolismo , Oogênese/fisiologia , Fatores de Transcrição/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas de Ciclo Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Meiose/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oócitos/citologia , Oogênese/efeitos dos fármacos , Sirolimo/farmacologia , Fatores de Transcrição/genéticaRESUMO
In this study we have determined the genome-wide relationship of JIL-1 kinase mediated H3S10 phosphorylation with gene expression and the distribution of the epigenetic H3K9me2 mark. We show in wild-type salivary gland cells that the H3S10ph mark is predominantly enriched at active genes whereas the H3K9me2 mark is largely associated with inactive genes. Comparison of global transcription profiles in salivary glands from wild-type and JIL-1 null mutant larvae revealed that the expression levels of 1539 genes changed at least 2-fold in the mutant and that a substantial number (49%) of these genes were upregulated whereas 51% were downregulated. Furthermore, the results showed that downregulation of genes in the mutant was correlated with higher levels or acquisition of the H3K9me2 mark whereas upregulation of a gene was correlated with loss of or diminished H3K9 dimethylation. These results are compatible with a model where gene expression levels are modulated by the levels of the H3K9me2 mark independent of the state of the H3S10ph mark, which is not required for either transcription or gene activation to occur. Rather, H3S10 phosphorylation functions to indirectly maintain active transcription by counteracting H3K9 dimethylation and gene silencing.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Epigênese Genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Mapeamento Cromossômico , Drosophila melanogaster/metabolismo , Feminino , Genoma de Inseto , Larva/genética , Larva/metabolismo , Masculino , Metilação , Fosforilação , Transporte Proteico , Glândulas Salivares/metabolismo , TranscriptomaRESUMO
The JIL-1 kinase mainly localizes to euchromatic interband regions of polytene chromosomes and is the kinase responsible for histone H3S10 phosphorylation at interphase in Drosophila. However, recent findings raised the possibility that the binding of some H3S10ph antibodies may be occluded by the H3K9me2 mark obscuring some H3S10 phosphorylation sites. Therefore, we have characterized an antibody to the epigenetic H3S10phK9me2 double mark as well as three commercially available H3S10ph antibodies. The results showed that for some H3S10ph antibodies their labeling indeed can be occluded by the concomitant presence of the H3K9me2 mark. Furthermore, we demonstrate that the double H3S10phK9me2 mark is present in pericentric heterochromatin as well as on the fourth chromosome of wild-type polytene chromosomes but not in preparations from JIL-1 or Su(var)3-9 null larvae. Su(var)3-9 is a methyltransferase mediating H3K9 dimethylation. Furthermore, the H3S10phK9me2 labeling overlapped with that of the non-occluded H3S10ph antibodies as well as with H3K9me2 antibody labeling. Interestingly, when a Lac-I-Su(var)3-9 transgene is overexpressed, it upregulates H3K9me2 dimethylation on the chromosome arms creating extensive ectopic H3S10phK9me2 marks suggesting that the H3K9 dimethylation occurred at euchromatic H3S10ph sites. This is further supported by the finding that under these conditions euchromatic H3S10ph labeling by the occluded antibodies was abolished. Thus, our findings indicate a novel role for the JIL-1 kinase in epigenetic regulation of heterochromatin in the context of the chromocenter and fourth chromosome by creating a composite H3S10phK9me2 mark together with the Su(var)3-9 methyltransferase.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epigênese Genética , Marcadores Genéticos , Heterocromatina/química , Metilação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismoRESUMO
The JIL-1 kinase localizes to Drosophila polytene chromosome interbands and phosphorylates histone H3 at interphase, counteracting histone H3 lysine 9 dimethylation and gene silencing. JIL-1 can be divided into four main domains, including an NH2-terminal domain, two separate kinase domains, and a COOH-terminal domain. In this study, we characterize the domain requirements of the JIL-1 kinase for histone H3 serine 10 (H3S10) phosphorylation and chromatin remodeling in vivo. We show that a JIL-1 construct without the NH2-terminal domain is without H3S10 phosphorylation activity despite the fact that it localizes properly to polytene interband regions and that it contains both kinase domains. JIL-1 is a double kinase, and we demonstrate that both kinase domains of JIL-1 are required to be catalytically active for H3S10 phosphorylation to occur. Furthermore, we provide evidence that JIL-1 is phosphorylated at serine 424 and that this phosphorylation is necessary for JIL-1 H3S10 phosphorylation activity. Thus, these data are compatible with a model where the NH2-terminal domain of JIL-1 is required for chromatin complex interactions that position the kinase domain(s) for catalytic activity in the context of the state of higher order nucleosome packaging and chromatin structure and where catalytic H3S10 phosphorylation activity mediated by the first kinase domain is dependent on autophosphorylation of serine 424 by the second kinase domain. Furthermore, using a lacO repeat tethering system to target mutated JIL-1 constructs with or without catalytic activity, we show that the epigenetic H3S10 phosphorylation mark itself functions as a causative regulator of chromatin structure independently of any structural contributions from the JIL-1 protein.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Epigênese Genética/fisiologia , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Histonas/genética , Mutação , Fosforilação/fisiologia , Cromossomos Politênicos/genética , Cromossomos Politênicos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Serina/genética , Serina/metabolismoRESUMO
Alterations in glycosylation are associated with breast tumor formation and progression. Nevertheless, the specific functions and mechanisms of the human major UDP-galactose transporter-encoding gene solute carrier family 35 member A2 (SLC35A2) in breast invasive carcinoma (BRCA) have not been fully determined. Here, we report that SLC35A2 promotes BRCA progression by activating extracellular signal regulated kinase (ERK). SLC35A2 expression and prognosis-predictive significance in pan-cancer were evaluated using public databases. The upstream non-coding RNAs (ncRNAs) of SLC35A2 were analyzed, and their expression and regulations were validated in breast tissues and cell lines by a quantitative PCR and dual-luciferase assays. We used bioinformatic tools to assess the link between SLC35A2 expression and immune infiltration and performed immunohistochemistry for validation. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, transwell, flow cytometer and western blotting were used to assess the proliferation, motility, cell cycle and apoptosis of BRCA cells in vitro. The xenograft models were constructed to assess the effect of SLC35A2 on BRCA tumor growth in vivo. The results indicated that SLC35A2 expression was upregulated and linked to an unfavorable prognosis in BRCA. The most likely upstream ncRNA-associated pathway of SLC35A2 in BRCA was the AC074117.1/hsa-let-7b-5p axis. SLC35A2 expression had positive correlations with the presence of Th2 cells, regulatory T cells and immune checkpoints. Knockdown of SLC35A2 could reduce BRCA cell proliferation, motility, and cause G2/M arrest and cell apoptosis via ERK signaling. Moreover, ERK activation can rescue the inhibitory effects of knockdown SLC35A2 in BRCA. In conclusion, AC074117.1/hsa-let-7b-5p axis-mediated high expression of SLC35A2 acts as a tumor promoter in BRCA via ERK signaling, which provides a potential target for BRCA treatment.
Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/patologia , MAP Quinases Reguladas por Sinal Extracelular , Sistema de Sinalização das MAP Quinases/genética , Apoptose/genética , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
The chromodomain protein, Chromator, can be divided into two main domains, a NH(2)-terminal domain (NTD) containing the chromodomain (ChD) and a COOH-terminal domain (CTD) containing a nuclear localization signal. During interphase Chromator is localized to chromosomes; however, during cell division Chromator redistributes to form a macro molecular spindle matrix complex together with other nuclear proteins that contribute to microtubule spindle dynamics and proper chromosome segregation during mitosis. It has previously been demonstrated that the CTD is sufficient for targeting Chromator to the spindle matrix. In this study, we show that the NTD domain of Chromator is required for proper localization to chromatin during interphase and that chromosome morphology defects observed in Chromator hypomorphic mutant backgrounds can be largely rescued by expression of this domain. Furthermore, we show that the ChD domain can interact with histone H1 and that this interaction is necessary for correct chromatin targeting. Nonetheless, that localization to chromatin still occurs in the absence of the ChD indicates that Chromator possesses a second mechanism for chromatin association and we provide evidence that this association is mediated by other sequences residing in the NTD. Taken together these findings suggest that Chromator's chromatin functions are largely governed by the NH(2)-terminal domain whereas functions related to mitosis are mediated mainly by COOH-terminal sequences.
Assuntos
Cromatina/química , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Interfase/fisiologia , Modelos Moleculares , Proteínas Associadas à Matriz Nuclear/metabolismo , Animais , Drosophila melanogaster/genética , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos/genética , Immunoblotting , Imunoprecipitação , Estrutura Terciária de ProteínaRESUMO
The JIL-1 kinase localizes specifically to euchromatin interband regions of polytene chromosomes and is the kinase responsible for histone H3S10 phosphorylation at interphase. Genetic interaction assays with strong JIL-1 hypomorphic loss-of-function alleles have demonstrated that the JIL-1 protein can counterbalance the effect of the major heterochromatin components on position-effect variegation (PEV) and gene silencing. However, it is unclear whether this was a causative effect of the epigenetic H3S10 phosphorylation mark, or whether the effect of the JIL-1 protein on PEV was in fact caused by other functions or structural features of the protein. By transgenically expressing various truncated versions of JIL-1, with or without kinase activity, and assessing their effect on PEV and heterochromatic spreading, we show that the gross perturbation of polytene chromosome morphology observed in JIL-1 null mutants is unrelated to gene silencing in PEV and is likely to occur as a result of faulty polytene chromosome alignment and/or organization, separate from epigenetic regulation of chromatin structure. Furthermore, the findings provide evidence that the epigenetic H3S10 phosphorylation mark itself is necessary for preventing the observed heterochromatic spreading independently of any structural contributions from the JIL-1 protein.
Assuntos
Efeitos da Posição Cromossômica , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epigênese Genética , Inativação Gênica , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/metabolismo , Olho/anatomia & histologia , Heterocromatina/metabolismo , Histonas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , TransgenesRESUMO
OBJECTIVE: Kidney renal papillary cell carcinoma (KIRP) is the main subtype of renal cell carcinoma (RCC). The Progestin and AdipoQ Receptor Family Member 4 (PAQR4) has been found highly expressed in numerous cancers compared to normal tissues, but the role of PAQR4 in KIRP is unclear. METHODS: The expression levels of PAQR4 mRNA obtained from TCGA. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of PAQR4 expression in KIRP patients. Chi-square test was used to determine the correlation between clinical features and PAQR4 expression. Kaplan-Meier analysis and Cox analysis were used to determine the prognostic value of expression levels of PAQR4 in KIRP patients. Gene set enrichment analysis (GSEA) was also performed. The level of PAQR4 mRNA, protein expression and cell proliferation were analyzed through qRT-PCR, western blot and CCK-8 assay. RESULTS: The expression levels of PAQR4 was significantly higher in KIRP tissues. Highly expressed PAQR4 mRNA was correlated with gender, clinical stage and overall survival. Multivariate analysis indicated that PAQR4 was an independent risk factor for patients with KIRP. GPCR ligand binding, signaling by Rho GTPases, DNA repair and PI3K-AKT signaling pathway were associated with aberrant PAQR4 expressions. Moreover, the expression levels of PAQR4 was upregulated in human KIRP and the inhibition of PAQR4 reduced cells proliferation. CONCLUSION: PAQR4 could be a potential diagnostic and prognostic biomarker in KIRP. The aberrant expression of this protein may trigger the alterations in the numerous signaling pathways, a process likely causing and accelerating the disease.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Rim/patologia , Neoplasias Renais/patologia , Ligantes , Fosfatidilinositol 3-Quinases , Prognóstico , Receptores Acoplados a Proteínas G , RNA Mensageiro/genéticaRESUMO
The fundamental principle of immune checkpoint blockade (ICB) is to protect tumor-infiltrating T cells from being exhausted. Despite the remarkable success achieved by ICB treatment, only a small group of patients benefit from it. Characterized by a hypofunctional state with the expression of multiple inhibitory receptors, exhausted T (Tex) cells are a major obstacle in improving ICB. T cell exhaustion is a progressive process which adapts to persistent antigen stimulation in chronic infections and cancers. In this review, we elucidate the heterogeneity of Tex cells and offer new insights into the hierarchical transcriptional regulation of T cell exhaustion. Factors and signaling pathways that induce and promote exhaustion are also summarized. Moreover, we review the epigenetic and metabolic alterations of Tex cells and discuss how PD-1 signaling affects the balance between T cell activation and exhaustion, aiming to provide more therapeutic targets for applications of combinational immunotherapies.
Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Redes Reguladoras de Genes , Exaustão das Células T , Linfócitos T , Regulação da Expressão Gênica , Neoplasias/genética , Neoplasias/terapiaRESUMO
Mutations of spliceosome genes have been frequently identified in myeloid malignancies with the large-scale application of advanced sequencing technology. U2 small nuclear RNA auxiliary factor 1 (U2AF1), an essential component of U2AF heterodimer, plays a pivotal role in the pre-mRNA splicing processes to generate functional mRNAs. Over the past few decades, the mutation landscape of U2AF1 (most frequently involved S34 and Q157 hotspots) has been drawn in multiple cancers, particularly in myeloid malignancies. As a recognized early driver of myelodysplastic syndromes (MDSs), U2AF1 mutates most frequently in MDS, followed by acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). Here, for the first time, we summarize the research progress of U2AF1 mutations in myeloid malignancies, including the correlations between U2AF1 mutations with clinical and genetic characteristics, prognosis, and the leukemic transformation of patients. We also summarize the adverse effects of U2AF1 mutations on hematopoietic function, and the alterations in downstream alternative gene splicing and biological pathways, thus providing comprehensive insights into the roles of U2AF1 mutations in the myeloid malignancy pathogenesis. U2AF1 mutations are expected to be potential novel molecular markers for myeloid malignancies, especially for risk stratification, prognosis assessment, and a therapeutic target of MDS patients.
RESUMO
Introduction: TRIO and CNKSR2 have been demonstrated as the important regulators of RAC1. TRIO is a guanine exchange factor (GEF) and promotes RAC1 activity by accelerating the GDP to GTP exchange. CNKSR2 is a scaffold and adaptor protein and helps to maintain Rac1 GTP/GDP levels at a concentration conducive for dendritic spines formation. Dysregulated RAC1 activity causes synaptic function defects leading to neurodevelopmental disorders (NDDs), which manifest as intellectual disability, learning difficulties, and language disorders. Case presentation: Here, we reported two cases with TRIO variation from one family and three cases with CNKSR2 variation from another family. The family with TRIO variation carries a novel heterozygous frameshift variant c.3506delG (p. Gly1169AlafsTer11), where a prenatal case and an apparently asymptomatic carrier mother with only enlarged left lateral ventricles were firstly reported. On the other hand, the CNKSR2 family carries a novel hemizygous non-sense variant c.1282C>T (p. Arg428*). Concurrently, we identified a novel phenotype never reported in known pathogenic CNKSR2 variants, that hydrocephalus and widening lateral ventricle in a 6-year-old male of this family. Furthermore, the genotype-phenotype relationship for TRIO, CNKSR2, and RAC1 was explored through a literature review. Conclusion: The novel variants and unique clinical features of these two pedigrees will help expand our understanding of the genetic and phenotypic profile of TRIO- and CNKSR2-related diseases.