Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998999

RESUMO

Phellinus is a precious perennial medicinal fungus. Its polysaccharides are important bioactive components, and their chemical composition is complex. The polysaccharides are mainly extracted from the fruiting body and mycelium. The yield of the polysaccharides is dependent on the extraction method. They have many pharmacological activities, such as antitumor, immunomodulatory, antioxidant, hypoglycemic, anti-inflammatory, etc. They are also reported to show minor toxic and side effects. Many studies have reported the anticancer activity of Phellinus polysaccharides. This review paper provides a comprehensive examination of the current methodologies for the extraction and purification of Phellinus polysaccharides. Additionally, it delves into the structural characteristics, pharmacological activities, and mechanisms of action of these polysaccharides. The primary aim of this review is to offer a valuable resource for researchers, facilitating further studies on Phellinus polysaccharides and their potential applications.


Assuntos
Polissacarídeos Fúngicos , Humanos , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Basidiomycota/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Animais , Phellinus/química
2.
Cureus ; 16(5): e61347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947641

RESUMO

Pulmonary arteriovenous fistula (PAVF) is a rare congenital vascular malformation primarily manifested as dyspnea, migraine, ischemic stroke, hemoptysis, and nervous system complications. However, in our case, an 18-year-old male patient with PAVF presented with sudden onset of ventricular tachycardia and type 2 acute myocardial infarction as initial symptoms. A diagnosis was achieved through pulmonary artery computer tomography angiography (CTA) and three-dimensional (3D) computed tomography (CT) reconstruction, revealing a complex and giant PAVF. Following multidisciplinary team (MDT) consultation, the patient underwent thoracoscopic surgery and experienced a successful recovery during follow-up.

3.
Int J Pharm ; 656: 124045, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561134

RESUMO

The field of cancer therapy is witnessing the emergence of immunotherapy, an innovative approach that activates the body own immune system to combat cancer. Immunogenic cell death (ICD) has emerged as a prominent research focus in the field of cancer immunotherapy, attracting significant attention in recent years. The activation of ICD can induce the release of damage-associated molecular patterns (DAMPs), such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box protein 1 (HMGB1), and heat shock proteins (HSP). Subsequently, this process promotes the maturation of innate immune cells, including dendritic cells (DCs), thereby triggering a T cell-mediated anti-tumor immune response. The activation of the ICD ultimately leads to the development of long-lasting immune responses against tumors. Studies have demonstrated that partial therapeutic approaches, such as chemotherapy with doxorubicin, specific forms of radiotherapy, and phototherapy, can induce the generation of ICD. The main focus of this article is to discuss and review the therapeutic methods triggered by nanoparticles for ICD, while briefly outlining their anti-tumor mechanism. The objective is to provide a comprehensive reference for the widespread application of ICD.


Assuntos
Morte Celular Imunogênica , Imunoterapia , Nanopartículas , Neoplasias , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Animais , Nanopartículas/administração & dosagem , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos
4.
Colloids Surf B Biointerfaces ; 234: 113743, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215604

RESUMO

Cancer is currently one of the leading causes of mortality worldwide. Due to the inevitable shortcomings of conventional treatments, photothermal therapy (PTT) has attracted great attention as an emerging and non-invasive cancer treatment method. Photothermal agents (PTAs) is a necessary component of PTT to play its role. It accumulates at the tumor site through appropriate methods and converts the absorbed light energy into heat energy effectively under near-infrared light irradiation, thus increasing the temperature of the tumor area and facilitating ablation of the tumor cells. Compared to inorganic photothermal agents, which have limitations such as non-degradability and potential long-term toxicity in vivo, organic photothermal agents exhibit excellent biocompatibility and biodegradability, thus showing promising prospects for the application of PTT in cancer treatment. And these organic photothermal agents can also be engineered into nanoparticles to improve their water solubility, extend their circulation time in vivo, and specifically target tumors. Moreover, further combination of PTT with other treatment methods can effectively enhance the efficacy of cancer treatment and alleviate the side effects associated with single treatments. This article briefly introduces several common types of organic photothermal agents and their nanoparticles, and reviews the applications of PTT based on organic photothermal agents in combination with chemotherapy, photodynamic therapy, chemodynamic therapy, immunotherapy, and multimodal combination therapy for tumor treatment, which expands the ideas and methods in the field of tumor treatment.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia/métodos , Neoplasias/patologia , Terapia Combinada , Linhagem Celular Tumoral
5.
Eur J Pharmacol ; 968: 176419, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38360293

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) is a prime drug target for type 2 diabetes and obesity. The ligand initiated GLP-1R interaction with G protein has been well studied, but not with ß-arrestin 1/2. Therefore, bioluminescence resonance energy transfer (BRET), mutagenesis and an operational model were used to evaluate the roles of 85 extracellular surface residues on GLP-1R in ß-arrestin 1/2 recruitment triggered by three representative GLP-1R agonists (GLP-1, exendin-4 and oxyntomodulin). Residues selectively regulated ß-arrestin 1/2 recruitment for diverse ligands, and ß-arrestin isoforms were identified. Mutation of residues K130-S136, L142 and Y145 on the transmembrane helix 1 (TM1)-extracellular domain (ECD) linker decreased ß-arrestin 1 recruitment but increased ß-arrestin 2 recruitment. Other extracellular loop (ECL) mutations, including P137A, Q211A, D222A and M303A selectively affected ß-arrestin 1 recruitment while D215A, L217A, Q221A, S223A, Y289A, S301A, F381A and I382A involved more in ß-arrestin 2 recruitment for the ligands. Oxyntomodulin engaged more broadly with GLP-1R extracellular surface to drive ß-arrestin 1/2 recruitment than GLP-1 and exendin-4; I147, W214 and L218 involved in ß-arrestin 1 recruitment, while L141, D215, L218, D293 and F381 in ß-arrestin 2 recruitment for oxyntomodulin particularly. Additionally, the non-conserved residues on ß-arrestin 1/2 C-domains contributed to interaction with GLP-1R. Further proteomic profiling of GLP-1R stably expressed cell line upon ligand stimulation with or without ß-arrestin 1/2 overexpression demonstrated both commonly and biasedly regulated proteins and pathways associated with cognate ligands and ß-arrestins. Our study offers valuable information about ligand induced ß-arrestin recruitment mediated by GLP-1R and consequent intracellular signaling events.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , beta-Arrestina 1/metabolismo , Exenatida/farmacologia , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Ligantes , Oxintomodulina/farmacologia , Proteômica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , beta-Arrestinas/metabolismo
6.
Cell Discov ; 10(1): 18, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38346960

RESUMO

Class B1 G protein-coupled receptors (GPCRs) are important regulators of many physiological functions such as glucose homeostasis, which is mainly mediated by three peptide hormones, i.e., glucagon-like peptide-1 (GLP-1), glucagon (GCG), and glucose-dependent insulinotropic polypeptide (GIP). They trigger a cascade of signaling events leading to the formation of an active agonist-receptor-G protein complex. However, intracellular signal transducers can also activate the receptor independent of extracellular stimuli, suggesting an intrinsic role of G proteins in this process. Here, we report cryo-electron microscopy structures of the human GLP-1 receptor (GLP-1R), GCG receptor (GCGR), and GIP receptor (GIPR) in complex with Gs proteins without the presence of cognate ligands. These ligand-free complexes share a similar intracellular architecture to those bound by endogenous peptides, in which, the Gs protein alone directly opens the intracellular binding cavity and rewires the extracellular orthosteric pocket to stabilize the receptor in a state unseen before. While the peptide-binding site is partially occupied by the inward folded transmembrane helix 6 (TM6)-extracellular loop 3 (ECL3) juncture of GIPR or a segment of GCGR ECL2, the extracellular portion of GLP-1R adopts a conformation close to the active state. Our findings offer valuable insights into the distinct activation mechanisms of these three important receptors. It is possible that in the absence of a ligand, the intracellular half of transmembrane domain is mobilized with the help of Gs protein, which in turn rearranges the extracellular half to form a transitional conformation, facilitating the entry of the peptide N-terminus.

7.
J Med Chem ; 67(14): 12085-12098, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38991128

RESUMO

Liver fibrosis is a condition characterized by aberrant proliferation of connective tissue in the liver resulting from diverse etiological factors. G protein-coupled receptor GPR55 has recently been identified as a regulator of liver diseases. Herein, we report the discovery of a cyclic peptide P1-1 that antagonizes GPR55 and suppresses collagen secretion in hepatic stellate cells. The alanine scanning and docking study was carried out to predict the binding mode and allowed for further structural optimization of peptide antagonists for GPR55. The subsequent in vivo study demonstrated that P1-1 ameliorates CCl4-induce and MCD-diet-induce acute liver inflammation and fibrosis. Further study indicates that P1-1 reduces reactive oxygen species (ROS) production, attenuates ER stress, and inhibits mitochondria-associated hepatocyte apoptosis. In this work, we provided the first successful example of antagonizing GPR55 for liver inflammation and fibrosis, which validates GPR55 as a promising target for the treatment of liver fibrosis and affords a high-potent GPR55 antagonist P1-1 as a potential therapeutic candidate.


Assuntos
Cirrose Hepática , Receptores de Canabinoides , Receptores Acoplados a Proteínas G , Animais , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Receptores de Canabinoides/metabolismo , Camundongos , Masculino , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/uso terapêutico , Descoberta de Drogas , Relação Estrutura-Atividade , Estresse do Retículo Endoplasmático/efeitos dos fármacos
8.
JACS Au ; 4(3): 893-902, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559738

RESUMO

Synchrotron-based X-ray microscopy (XRM) has garnered widespread attention from researchers due to its high spatial resolution and excellent energy (element) resolution. Existing molecular probes suitable for XRM include immune probes and genetic labeling probes, enabling the precise imaging of various biological targets within cells. However, immune labeling techniques are prone to cross-interference between antigens and antibodies. Genetic labeling technologies have limited systems that allow express markers independently, and moreover, genetically encoded labels based on catalytic polymerization lack a fixed morphology. When applied to cell imaging, this can result in reduced localization accuracy due to the diffusion of labels within the cells. Therefore, both techniques face challenges in simultaneously labeling multiple biotargets within cells and achieving high-precision imaging. In this work, we applied the click reaction and developed a third category of imaging probes suitable for XRM, termed clickable X-ray nanoprobes (Click-XRN). Click-XRN consists of two components: an X-ray-sensitive multicolor imaging module and a particle-size-controllable morphology module. Efficient identification of intra- and extracellular biotargets is achieved through click reactions between the probe and biomolecules. Click-XRN possesses a controllable particle size, and its loading of various metal ions provides distinctive signals for imaging under XRM. Based on this, we optimized the imaging energy of Click-XRN with different particle sizes, enabling single-color and two-color imaging of the cell membrane, cell nucleus, and mitochondria with nanoscale spatial nanometers. Our work provides a potent molecular tool for investigating cellular activities through XRM.

9.
Int J Surg ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38385962

RESUMO

BACKGROUND: Lymph node metastasis (LNM) is an independent prognostic factor in numerous types of cancer. Therefore, a LNM-related gene-based nomogram may precisely predict survival and drug sensitivity, and reveal the mechanism underlying LNM. MATERIALS AND METHODS: Gene sequencing profiles of pan-cancer data (33 cancer types) were acquired from The Cancer Genome Atlas UCSC Xena database. Patients were classified into primary (N = 10,071) and testing (N = 5,036) cohorts. The lymph node score (LNscore) was established via single-cell RNA sequencing, whole-transcriptome sequencing, machine learning, and Cox regression analyses. A novel prognosis model, formulated by incorporating the LNscore and clinical characteristics, was evaluated using the concordance index, calibration curve, and decision curve analysis. Moreover, patients were assigned into high- and low-risk groups according to the median LNscore. We investigated these two groups for survival prognosis, functional enrichment, immune infiltration, and drug sensitivity. In addition, we silenced and overexpressed insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2). We also analyzed the behavior of breast cancer (BRCA) cells regarding lymphatic metastasis and lymphangiogenesis in vitro. IGF2BP2 stimulated the proliferation of BRCA cells via 5-Ethynyl-2'-deoxyuridine and Cell Counting Kit-8 experiments. RESULTS: A LNM-related set of 12 genes was identified and utilized to determine the LNscore. The concordance-index of both cohorts in the LNscore-based model was >0.7. The immune landscape revealed that the sensitivity to immunotherapy might be better in the high-risk group versus the low-risk group. In addition, we discovered that IGF2BP2 was overexpressed in BRCA tissues and significantly associated with poor survival. Functional analysis indicated that IGF2BP2 promoted BRCA cell migration and proliferation. Additionally, IGF2BP2 accelerated lymphatic metastasis and lymphangiogenesis in vivo. CONCLUSIONS: A novel LNscore-based model was established via comprehensive analysis of LNM-related genes. This model can accurately predict patient survival and drug sensitivity, and reveal the mechanism of LNM in the pan-cancer setting.

10.
Food Chem ; 448: 139026, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531298

RESUMO

Linusorbs (LOs), significantly influence oil quality and sensory properties of flaxseed oil. Trp-containing LOs exhibit distinct oxidative behavior when γ-tocopherol (γ-T) is present. Polar fractions of crude flaxseed oil were stripped via silica absorption, and reintroduced (LO and γ-T) separately into the oil matrix to investigate their interaction during storage. Compared with crude oil, LOs account for 18.49% reduction of p-anisidine value, while LOs with γ-T contributed to most of the endogenous antioxidant effect in crude oil. γ-T was found to suppress oxidation of Trp-containing LO at early stage (Met form), while facilitate oxidation while at their mid-stage (MetO form, Methionine sulfoxide). In vitro oxidation shows that CLD more likely cleaved into peptide fragments, while few products retain intact ring structures. LC-MS/MS analysis and silicon simulation revealed proximity between MetO and Trp residues, facilitating inter- or intra-molecular reactions and ring structure rupture. Remarkably, the presence of γ-T facilitate these phenomena.


Assuntos
Óleo de Semente do Linho , Triptofano , gama-Tocoferol , Triptofano/química , Óleo de Semente do Linho/química , gama-Tocoferol/química , Oxirredução , Antioxidantes/química , Espectrometria de Massas em Tandem , Linho/química
11.
Chin J Nat Med ; 22(1): 89-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278562

RESUMO

As the search for effective treatments for COVID-19 continues, the high mortality rate among critically ill patients in Intensive Care Units (ICU) presents a profound challenge. This study explores the potential benefits of traditional Chinese medicine (TCM) as a supplementary treatment for severe COVID-19. A total of 110 critically ill COVID-19 patients at the Intensive Care Unit (ICU) of Vulcan Hill Hospital between Feb., 2020, and April, 2020 (Wuhan, China) participated in this observational study. All patients received standard supportive care protocols, with a subset of 81 also receiving TCM as an adjunct treatment. Clinical characteristics during the treatment period and the clinical outcome of each patient were closely monitored and analysed. Our findings indicated that the TCM group exhibited a significantly lower mortality rate compared with the non-TCM group (16 of 81 vs 24 of 29; 0.3 vs 2.3 person/month). In the adjusted Cox proportional hazards models, TCM treatment was associated with improved survival odds (P < 0.001). Furthermore, the analysis also revealed that TCM treatment could partially mitigate inflammatory responses, as evidenced by the reduced levels of proinflammatory cytokines, and contribute to the recovery of multiple organic functions, thereby potentially increasing the survival rate of critically ill COVID-19 patients.


Assuntos
COVID-19 , Humanos , Medicina Tradicional Chinesa , SARS-CoV-2 , Estado Terminal , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa