Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(3): 2657-2678, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319724

RESUMO

BACKGROUND: Multiple myeloma (MM) is an incurable B-cell malignancy, but with the emergence of immunotherapy, a potential cure is hopeful. The individualized interaction between the tumor and bone marrow (BM) microenvironment determines the response to immunotherapy. Angiogenesis is a constant hallmark of the BM microenvironment in MM. However, little is known about the potency ability of angiogenesis-associated genes (AAGs) to regulate the immune microenvironment of MM patients. METHODS: We comprehensively dissected the associations between angiogenesis and genomic landscapes, prognosis, and the immune microenvironment by integrating 36 AAGs. Immunohistochemistry was performed to verify the correlation between angiogenic factor expression and patient prognosis. Single-sample gene set enrichment analysis was applied to quantify the relative abundance of 28 infiltrating cells. The AAG score was constructed using the least absolute shrinkage and selection operator Cox regression model. RESULTS: Angiogenesis was closely correlated with MM patient prognosis, and the mutation intensity of the AAGs was low. Immunohistochemistry confirmed that high microvessel density predicted poor prognosis. Three AAG clusters and two gene clusters with distinct clinical outcomes and immune characteristics were identified. The established AAG_score model performed well in predicting patient prognosis and active immunotherapy response. The high-AAG_score subgroup was characterized by reduced immune cell infiltration, poor prognosis, and inactive immunotherapy response. Multivariate analyses indicated that the AAG_score was strongly robust and independent among the prognostic variables. CONCLUSION: This study revealed that angiogenesis is significantly related to MM patient prognosis and immune phenotype. Evaluating the AAG signature was conducive to predicting patient response to immunotherapy and guiding more efficacious immunotherapy strategies.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Angiogênese , Fenômenos Fisiológicos Cardiovasculares , Genômica , Imunoterapia , Microambiente Tumoral/genética , Prognóstico
2.
Heliyon ; 10(2): e24366, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288023

RESUMO

Objective: This study aims to identify the periodontitis factor that activates excessive autophagy in pancreatic ß cells, resulting in organic lesions of pancreatic islet tissues and diminished insulin secretion, thereby accelerating the progression of diabetes mellitus (DM). Methods: Sprague-Dawley (SD) rats were induced with periodontitis (PD), type 2 diabetes mellitus (T2DM), or the combination of T2DM and PD (DP) through a high-sugar/high-fat diet and ligation of the tooth neck with silk thread. Alveolar bone resorption was assessed using Micro-CT, blood glucose levels were measured with a blood glucose meter, pancreatic tissue pathology was examined through HE staining, and the expression of autophagy-related proteins Beclin1 and LC3II/LC3I was analyzed using Western blotting. Results: Micro-CT results revealed more pronounced alveolar bone resorption and root bifurcation exposure in the PD and DP groups compared to the control group, with the DP group exhibiting the most severe condition. HE staining demonstrated the formation of periodontal pockets, severe alveolar bone destruction, and abnormal pancreatic islet tissue morphology in the PD and DP groups. The serum levels of IL-6, TNF-α, and IL-1ß increased sequentially in the control, DM, PD, and DP groups (P < 0.05). Relative expressions of GCK and GLUT-2 mRNA decreased in the PD group compared to the control group (P > 0.05), while the mRNA expressions in the DP and DM groups increased (P < 0.05), with the DP group exhibiting higher levels than the DM group (P < 0.05). Western blot results indicated increased expression levels of autophagy proteins Beclin1 and LC3II/LC3I in the DM and DP groups compared to the control group (P < 0.05), with the DP group exhibiting higher levels than the DM group (P < 0.05). Conclusion: The findings demonstrate that periodontal inflammatory factors may promote the enhancement of pancreatic cell autophagy in diabetic rats.

3.
Int J Mol Med ; 34(5): 1309-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25119516

RESUMO

The present study was primarily undertaken to examine the hypothesis that mitochondrial DNA (mtDNA) mutations and telomere length may be associated with aplastic anemia (AA). Our study included a single institution analysis of 40 patients presenting with AA first diagnosed at the Affiliated Hospital of Shandong, University of Traditional Chinese Medicine between 2010 and 2013. Bone marrow and oral epithelial samples were collected from patients with AA (n=40) for mtDNA mutation and telomere length determinations. Bone marrow specimens were collected from 40 healthy volunteers as controls for the examination of telomere length. The mitochondrial genome was amplified by polymerase chain reaction (PCR), and the products were used for sequencing and analysis. We detected 146 heteroplasmic mutations in 18 genes from 40 patients with AA, including 39 silent mutations and 28 frameshift mutations. We used the gamma globin gene (HBG) as the control gene in real-time PCR to survey the relative telomere length measurements of the patients with AA and the healthy volunteers. Telomere length was expressed as the relative T/S value. We observed a negative correlation between the mtDNA non-silent mutation and the white blood cell (WBC) count, hemoglobin and platelet count. Of note, there was a positive correlation between the relative T/S value and WBC count, hemoglobin and platelet count, and a negative correlation between the non-silent mutation and the relative T/S value. We conclude that the functional impairment of the mitochondrial respiratory chain induced by mutation and telomere length shortening may play an important role in the process of hematopoietic failure in patients with AA. Additionally, mtDNA mutations and telomere length shortening influenced each other.


Assuntos
Anemia Aplástica/genética , DNA Mitocondrial/genética , Telômero/genética , Adolescente , Adulto , Idoso , Anemia Aplástica/diagnóstico , Medula Óssea/metabolismo , Estudos de Casos e Controles , Criança , Feminino , Hemoglobinas/metabolismo , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo Genético , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Manejo de Espécimes , Telômero/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa