Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36434788

RESUMO

Ultraliser is a neuroscience-specific software framework capable of creating accurate and biologically realistic 3D models of complex neuroscientific structures at intracellular (e.g. mitochondria and endoplasmic reticula), cellular (e.g. neurons and glia) and even multicellular scales of resolution (e.g. cerebral vasculature and minicolumns). Resulting models are exported as triangulated surface meshes and annotated volumes for multiple applications in in silico neuroscience, allowing scalable supercomputer simulations that can unravel intricate cellular structure-function relationships. Ultraliser implements a high-performance and unconditionally robust voxelization engine adapted to create optimized watertight surface meshes and annotated voxel grids from arbitrary non-watertight triangular soups, digitized morphological skeletons or binary volumetric masks. The framework represents a major leap forward in simulation-based neuroscience, making it possible to employ high-resolution 3D structural models for quantification of surface areas and volumes, which are of the utmost importance for cellular and system simulations. The power of Ultraliser is demonstrated with several use cases in which hundreds of models are created for potential application in diverse types of simulations. Ultraliser is publicly released under the GNU GPL3 license on GitHub (BlueBrain/Ultraliser). SIGNIFICANCE: There is crystal clear evidence on the impact of cell shape on its signaling mechanisms. Structural models can therefore be insightful to realize the function; the more realistic the structure can be, the further we get insights into the function. Creating realistic structural models from existing ones is challenging, particularly when needed for detailed subcellular simulations. We present Ultraliser, a neuroscience-dedicated framework capable of building these structural models with realistic and detailed cellular geometries that can be used for simulations.


Assuntos
Neurônios , Software , Simulação por Computador
2.
Glia ; 71(7): 1667-1682, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36949723

RESUMO

Astrocytes are integral components of brain circuits, where they sense, process, and respond to surrounding activity, maintaining homeostasis and regulating synaptic transmission, the sum of which results in behavior modulation. These interactions are possible due to their complex morphology, composed of a tree-like structure of processes to cover defined territories ramifying in a mesh-like system of fine leaflets unresolved by conventional optic microscopy. While recent reports devoted more attention to leaflets and their dynamic interactions with synapses, our knowledge about the tree-like "backbone" structure in physiological conditions is incomplete. Recent transcriptomic studies described astrocyte molecular diversity, suggesting structural heterogeneity in regions such as the hippocampus, which is crucial for cognitive and emotional behaviors. In this study, we carried out the structural analysis of astrocytes across the hippocampal subfields of Cornu Ammonis area 1 (CA1) and dentate gyrus in the dorsoventral axis. We found that astrocytes display heterogeneity across the hippocampal subfields, which is conserved along the dorsoventral axis. We further found that astrocytes appear to contribute in an exocytosis-dependent manner to a signaling loop that maintains the backbone structure. These findings reveal astrocyte heterogeneity in the hippocampus, which appears to follow layer-specific cues and depend on the neuro-glial environment.


Assuntos
Astrócitos , Hipocampo , Animais , Camundongos , Astrócitos/fisiologia , Região CA1 Hipocampal , Neuroglia , Transmissão Sináptica
3.
Glia ; 70(9): 1585-1604, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35634946

RESUMO

Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.


Assuntos
Esquizofrenia , Astrócitos/patologia , Dopamina , Humanos , Neuroglia/patologia , Neurônios/patologia , Esquizofrenia/genética
4.
Cereb Cortex ; 31(12): 5686-5703, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34387659

RESUMO

Astrocytes connect the vasculature to neurons mediating the supply of nutrients and biochemicals. They are involved in a growing number of physiological and pathophysiological processes that result from biophysical, physiological, and molecular interactions in this neuro-glia-vascular ensemble (NGV). The lack of a detailed cytoarchitecture severely restricts the understanding of how they support brain function. To address this problem, we used data from multiple sources to create a data-driven digital reconstruction of the NGV at micrometer anatomical resolution. We reconstructed 0.2 mm3 of the rat somatosensory cortex with 16 000 morphologically detailed neurons, 2500 protoplasmic astrocytes, and its microvasculature. The consistency of the reconstruction with a wide array of experimental measurements allows novel predictions of the NGV organization, allowing the anatomical reconstruction of overlapping astrocytic microdomains and the quantification of endfeet connecting each astrocyte to the vasculature, as well as the extent to which they cover the latter. Structural analysis showed that astrocytes optimize their positions to provide uniform vascular coverage for trophic support and signaling. However, this optimal organization rapidly declines as their density increases. The NGV digital reconstruction is a resource that will enable a better understanding of the anatomical principles and geometric constraints, which govern how astrocytes support brain function.


Assuntos
Astrócitos , Neuroglia , Animais , Astrócitos/fisiologia , Neurônios/fisiologia , Ratos , Transdução de Sinais , Córtex Somatossensorial
5.
Mol Psychiatry ; 25(4): 732-749, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127471

RESUMO

Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.


Assuntos
Astrócitos/metabolismo , Disfunção Cognitiva/metabolismo , Dopamina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/fisiopatologia , Dopamina/farmacologia , Homeostase , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
6.
PLoS Comput Biol ; 14(8): e1006392, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30161133

RESUMO

The mechanism of rapid energy supply to the brain, especially to accommodate the heightened metabolic activity of excited states, is not well-understood. We explored the role of glycogen as a fuel source for neuromodulation using the noradrenergic stimulation of glia in a computational model of the neural-glial-vasculature ensemble (NGV). The detection of norepinephrine (NE) by the astrocyte and the coupled cAMP signal are rapid and largely insensitive to the distance of the locus coeruleus projection release sites from the glia, implying a diminished impact for volume transmission in high affinity receptor transduction systems. Glucosyl-conjugated units liberated from glial glycogen by NE-elicited cAMP second messenger transduction winds sequentially through the glycolytic cascade, generating robust increases in NADH and ATP before pyruvate is finally transformed into lactate. This astrocytic lactate is rapidly exported by monocarboxylate transporters to the associated neuron, demonstrating that the astrocyte-to-neuron lactate shuttle activated by glycogenolysis is a likely fuel source for neuromodulation and enhanced neural activity. Altogether, the energy supply for both astrocytes and neurons can be supplied rapidly by glycogenolysis upon neuromodulatory stimulus.


Assuntos
Glicogênio/metabolismo , Glicogenólise/efeitos dos fármacos , Norepinefrina/metabolismo , Animais , Astrócitos/fisiologia , Encéfalo/metabolismo , Simulação por Computador , AMP Cíclico/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Glicogenólise/fisiologia , Glicólise/fisiologia , Humanos , Ácido Láctico/metabolismo , Modelos Neurológicos , Neurônios/fisiologia , Neurotransmissores/metabolismo , Norepinefrina/fisiologia
7.
Neural Plast ; 2014: 254574, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551459

RESUMO

Astrocytes are highly secretory cells, participating in rapid brain communication by releasing glutamate. Recent evidences have suggested that this process is largely mediated by Ca(2+)-dependent regulated exocytosis of VGLUT-positive vesicles. Here by taking advantage of VGLUT1-pHluorin and TIRF illumination, we characterized mechanisms of glutamate exocytosis evoked by endogenous transmitters (glutamate and ATP), which are known to stimulate Ca(2+) elevations in astrocytes. At first we characterized the VGLUT1-pHluorin expressing vesicles and found that VGLUT1-positive vesicles were a specific population of small synaptic-like microvesicles containing glutamate but which do not express VGLUT2. Endogenous mediators evoked a burst of exocytosis through activation of G-protein coupled receptors. Subsequent glutamate exocytosis was reduced by about 80% upon pharmacological blockade of the prostaglandin-forming enzyme, cyclooxygenase. On the other hand, receptor stimulation was accompanied by extracellular release of prostaglandin E2 (PGE2). Interestingly, administration of exogenous PGE2 produced per se rapid, store-dependent burst exocytosis of glutamatergic vesicles in astrocytes. Finally, when PGE2-neutralizing antibody was added to cell medium, transmitter-evoked exocytosis was again significantly reduced (by about 50%). Overall these data indicate that cyclooxygenase products are responsible for a major component of glutamate exocytosis in astrocytes and that large part of such component is sustained by autocrine/paracrine action of PGE2.


Assuntos
Astrócitos/fisiologia , Exocitose/fisiologia , Ácido Glutâmico/fisiologia , Prostaglandinas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Anticorpos Bloqueadores/farmacologia , Aspirina/farmacologia , Células Cultivadas , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/antagonistas & inibidores , Dinoprostona/farmacologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Indometacina/farmacologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Prostaglandina-Endoperóxido Sintases/fisiologia , Ratos , Transdução de Sinais/fisiologia , Transfecção , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
8.
Front Med (Lausanne) ; 10: 1280592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239607

RESUMO

Despite the increasing body of evidence supporting the use of simulation in medicine, a question remains: when should we introduce it into the medical school's curriculum? We present the experience and future perspectives of the MD program in Medicine and Surgery of University of Turin-MedInTo. Since its launch, MedInTo has been dedicated to integrating innovative teaching approaches at the early stages into the medical curriculum. Herewith, we describe a case-based approach for our activities, which includes the utilization of simulation for emergency medical care training for students and the integration of virtual and augmented reality technology. Dedicated surgical training activities using virtual-augmented reality and life-like simulator for students are also described.

9.
Biol Psychiatry ; 93(11): 966-975, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958999

RESUMO

BACKGROUND: Astrocytes control synaptic activity by modulating perisynaptic concentrations of ions and neurotransmitters including dopamine (DA) and, as such, could be involved in the modulating aspects of mammalian behavior. METHODS: We produced a conditional deletion of the vesicular monoamine transporter 2 (VMAT2) specifically in astrocytes (aVMTA2cKO mice) and studied the effects of the lack of VMAT2 in prefrontal cortex (PFC) astrocytes on the regulation of DA levels, PFC circuit functions, and behavioral processes. RESULTS: We found a significant reduction of medial PFC (mPFC) DA levels and excessive grooming and compulsive repetitive behaviors in aVMAT2cKO mice. The mice also developed a synaptic pathology, expressed through increased relative AMPA versus NMDA receptor currents in synapses of the dorsal striatum receiving inputs from the mPFC. Importantly, behavioral and synaptic phenotypes were rescued by re-expression of mPFC VMAT2 and L-DOPA treatment, showing that the deficits were driven by mPFC astrocytes that are critically involved in developmental DA homeostasis. By analyzing human tissue samples, we found that VMAT2 is expressed in human PFC astrocytes, corroborating the potential translational relevance of our observations in mice. CONCLUSIONS: Our study shows that impairment of the astrocytic control of DA in the mPFC leads to symptoms resembling obsessive-compulsive spectrum disorders such as trichotillomania and has a profound impact on circuit function and behaviors.


Assuntos
Astrócitos , Dopamina , Camundongos , Animais , Humanos , Astrócitos/fisiologia , Asseio Animal , Sinapses/fisiologia , Córtex Pré-Frontal/fisiologia , Mamíferos
10.
Adv Exp Med Biol ; 970: 307-31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22351062

RESUMO

In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.


Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/ultraestrutura , Cálcio/metabolismo , Comunicação Celular , Exocitose/fisiologia , Corantes Fluorescentes , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Humanos , Microscopia Eletrônica , Plasticidade Neuronal/fisiologia , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato/fisiologia
11.
Metabolites ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34436491

RESUMO

More and more evidence shows how brain energy metabolism is the linkage between physiological and morphological synaptic plasticity and memory consolidation. Different types of memory are associated with differential inputs, each with specific inputs that are upstream diverse molecular cascades depending on the receptor activity. No matter how heterogeneous the response is, energy availability represents the lowest common denominator since all these mechanisms are energy consuming and the brain networks adapt their performance accordingly. Astrocytes exert a primary role in this sense by acting as an energy buffer; glycogen granules, a mechanism to store glucose, are redistributed at glance and conveyed to neurons via the Astrocyte-Neuron Lactate Shuttle (ANLS). Here, we review how different types of memory relate to the mechanisms of energy delivery in the brain.

12.
Front Surg ; 8: 657901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859995

RESUMO

Background: While performing surgeries in the OR, surgeons and assistants often need to access several information regarding surgical planning and/or procedures related to the surgery itself, or the accessory equipment to perform certain operations. The accessibility of this information often relies on the physical presence of technical and medical specialists in the OR, which is increasingly difficult due to the number of limitations imposed by the COVID emergency to avoid overcrowded environments or external personnel. Here, we analyze several scenarios where we equipped OR personnel with augmented reality (AR) glasses, allowing a remote specialist to guide OR operations through voice and ad-hoc visuals, superimposed to the field of view of the operator wearing them. Methods: This study is a preliminary case series of prospective collected data about the use of AR-assistance in spine surgery from January to July 2020. The technology has been used on a cohort of 12 patients affected by degenerative lumbar spine disease with lumbar sciatica co-morbidities. Surgeons and OR specialists were equipped with AR devices, customized with P2P videoconference commercial apps, or customized holographic apps. The devices were tested during surgeries for lumbar arthrodesis in a multicenter experience involving author's Institutions. Findings: A total number of 12 lumbar arthrodesis have been performed while using the described AR technology, with application spanning from telementoring (3), teaching (2), surgical planning superimposition and interaction with the hologram using a custom application for Microsoft hololens (1). Surgeons wearing the AR goggles reported a positive feedback as for the ergonomy, wearability and comfort during the procedure; being able to visualize a 3D reconstruction during surgery was perceived as a straightforward benefit, allowing to speed-up procedures, thus limiting post-operational complications. The possibility of remotely interacting with a specialist on the glasses was a potent added value during COVID emergency, due to limited access of non-resident personnel in the OR. Interpretation: By allowing surgeons to overlay digital medical content on actual surroundings, augmented reality surgery can be exploited easily in multiple scenarios by adapting commercially available or custom-made apps to several use cases. The possibility to observe directly the operatory theater through the eyes of the surgeon might be a game-changer, giving the chance to unexperienced surgeons to be virtually at the site of the operation, or allowing a remote experienced operator to guide wisely the unexperienced surgeon during a procedure.

13.
J Neurosci ; 28(37): 9122-32, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18784293

RESUMO

Astrocytes are the most abundant glial cell type in the brain. Although not apposite for long-range rapid electrical communication, astrocytes share with neurons the capacity of chemical signaling via Ca(2+)-dependent transmitter exocytosis. Despite this recent finding, little is known about the specific properties of regulated secretion and vesicle recycling in astrocytes. Important differences may exist with the neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca(2+) from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We here take advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses (Voglmaier et al., 2006; Balaji and Ryan, 2007); we combine epifluorescence and total internal reflection fluorescence imaging to investigate with unprecedented temporal and spatial resolution, the stimulus-secretion coupling underlying exo-endocytosis of glutamatergic synaptic-like microvesicles (SLMVs) in astrocytes. Our main findings indicate that (1) exo-endocytosis in astrocytes proceeds with a time course on the millisecond time scale (tau(exocytosis) = 0.24 +/- 0.017 s; tau(endocytosis) = 0.26 +/- 0.03 s) and (2) exocytosis is controlled by local Ca(2+) microdomains. We identified submicrometer cytosolic compartments delimited by endoplasmic reticulum tubuli reaching beneath the plasma membrane and containing SLMVs at which fast (time-to-peak, approximately 50 ms) Ca(2+) events occurred in precise spatial-temporal correlation with exocytic fusion events. Overall, the above characteristics of transmitter exocytosis from astrocytes support a role of this process in fast synaptic modulation.


Assuntos
Astrócitos/citologia , Cálcio/metabolismo , Membrana Celular/fisiologia , Endocitose/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cinética , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Ratos , Transfecção/métodos , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
14.
Front Neurosci ; 18: 1393165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800570
15.
Front Cell Neurosci ; 13: 82, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894801

RESUMO

Brain energy metabolism has been the object of intense research in recent years. Pioneering work has identified the different cell types involved in energy production and use. Recent evidence has demonstrated a key role of L-Lactate in brain energy metabolism, producing a paradigm-shift in our understanding of the neuronal energy metabolism. At the center of this shift, is the identification of a central role of astrocytes in neuroenergetics. Thanks to their morphological characteristics, they are poised to take up glucose from the circulation and deliver energy substrates to neurons. Astrocyte neuron lactate shuttle (ANLS) model, has shown that the main energy substrate that astrocytes deliver to neurons is L-Lactate, to sustain neuronal oxidative metabolism. L-Lactate can also be produced from glycogen, the storage form of glucose, which is exclusively localized in astrocytes. Inhibition of glycogen metabolism and the ensuing inhibition of L-Lactate production leads to cognitive dysfunction. Experimental evidence indicates that the role of lactate in cognitive function relates not only to its role as a metabolic substrate for neurons but also as a signaling molecule for synaptic plasticity. Interestingly, a similar metabolic uncoupling appears to exist in peripheral tissues plasma, whereby glucose provides L-Lactate as the substrate for cellular oxidative metabolism. In this perspective article, we review the known information on the distribution of glycogen and lactate within brain cells, and how this distribution relates to the energy regime of glial vs. neuronal cells.

16.
J Vis Exp ; (151)2019 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-31609327

RESUMO

Serial sectioning and subsequent high-resolution imaging of biological tissue using electron microscopy (EM) allow for the segmentation and reconstruction of high-resolution imaged stacks to reveal ultrastructural patterns that could not be resolved using 2D images. Indeed, the latter might lead to a misinterpretation of morphologies, like in the case of mitochondria; the use of 3D models is, therefore, more and more common and applied to the formulation of morphology-based functional hypotheses. To date, the use of 3D models generated from light or electron image stacks makes qualitative, visual assessments, as well as quantification, more convenient to be performed directly in 3D. As these models are often extremely complex, a virtual reality environment is also important to be set up to overcome occlusion and to take full advantage of the 3D structure. Here, a step-by-step guide from image segmentation to reconstruction and analysis is described in detail.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Eletrônica/métodos , Neuroglia/citologia , Neurônios/citologia , Realidade Virtual
17.
Prog Neurobiol ; 183: 101696, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31550514

RESUMO

With the rapid evolution in the automation of serial electron microscopy in life sciences, the acquisition of terabyte-sized datasets is becoming increasingly common. High resolution serial block-face imaging (SBEM) of biological tissues offers the opportunity to segment and reconstruct nanoscale structures to reveal spatial features previously inaccessible with simple, single section, two-dimensional images. In particular, we focussed here on glial cells, whose reconstruction efforts in literature are still limited, compared to neurons. We imaged a 750,000 cubic micron volume of the somatosensory cortex from a juvenile P14 rat, with 20 nm accuracy. We recognized a total of 186 cells using their nuclei, and classified them as neuronal or glial based on features of the soma and the processes. We reconstructed for the first time 4 almost complete astrocytes and neurons, 4 complete microglia and 4 complete pericytes, including their intracellular mitochondria, 186 nuclei and 213 myelinated axons. We then performed quantitative analysis on the three-dimensional models. Out of the data that we generated, we observed that neurons have larger nuclei, which correlated with their lesser density, and that astrocytes and pericytes have a higher surface to volume ratio, compared to other cell types. All reconstructed morphologies represent an important resource for computational neuroscientists, as morphological quantitative information can be inferred, to tune simulations that take into account the spatial compartmentalization of the different cell types.


Assuntos
Astrócitos/ultraestrutura , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional , Microglia/ultraestrutura , Microscopia Eletrônica de Varredura , Neurônios/ultraestrutura , Pericitos/ultraestrutura , Animais , Microscopia Eletrônica , Ratos , Córtex Somatossensorial/citologia , Córtex Somatossensorial/diagnóstico por imagem
18.
J Neuroimmunol ; 198(1-2): 82-91, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18538866

RESUMO

Chemokines are small chemotactic molecules widely expressed throughout the central nervous system. A number of papers, during the past few years, have suggested that they have physiological functions in addition to their roles in neuroinflammatory diseases. In this context, the best evidence concerns the CXC-chemokine stromal cell-derived factor (SDF-1alpha or CXCL12) and its receptor CXCR4, whose signalling cascade is also implicated in the glutamate release process from astrocytes. Recently, astrocytic synaptic like microvesicles (SLMVs) that express vesicular glutamate transporters (VGLUTs) and are able to release glutamate by Ca2+-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Here, in order to elucidate whether SDF-1alpha/CXCR4 system can participate to the brain fast communication systems, we investigated whether the activation of CXCR4 receptor triggers glutamate exocytosis in astrocytes. By using total internal reflection (TIRF) microscopy and the membrane-fluorescent styryl dye FM4-64, we adapted an imaging methodology recently developed to measure exocytosis and recycling in synaptic terminals, and monitored the CXCR4-mediated exocytosis of SLMVs in astrocytes. We analyzed the co-localization of VGLUT with the FM dye at single-vesicle level, and observed the kinetics of the FM dye release during single fusion events. We found that the activation of CXCR4 receptors triggered a burst of exocytosis on a millisecond time scale that involved the release of Ca2+ from internal stores. These results support the idea that astrocytes can respond to external stimuli and communicate with the neighboring cells via fast release of glutamate.


Assuntos
Astrócitos/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Exocitose/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Líquido Intracelular/efeitos dos fármacos , Microscopia de Interferência/métodos , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Líquido Intracelular/metabolismo , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Ratos , Receptores CXCR4/fisiologia , Fatores de Tempo , Transfecção/métodos , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
19.
J Comput Neurosci ; 24(3): 330-45, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18044016

RESUMO

Electrical synapses continuously transfer signals bi-directionally from one cell to another, directly or indirectly via intermediate cells. Electrical synapses are common in many brain structures such as the inferior olive, the subcoeruleus nucleus and the neocortex, between neurons and between glial cells. In the cortex, interneurons have been shown to be electrically coupled and proposed to participate in large, continuous cortical syncytia, as opposed to smaller spatial domains of electrically coupled cells. However, to explore the significance of these findings it is imperative to map the electrical synaptic microcircuits, in analogy with in vitro studies on monosynaptic and disynaptic chemical coupling. Since "walking" from cell to cell over large distances with a glass pipette is challenging, microinjection of (fluorescent) dyes diffusing through gap-junctions remains so far the only method available to decipher such microcircuits even though technical limitations exist. Based on circuit theory, we derive analytical descriptions of the AC electrical coupling in networks of isopotential cells. We then suggest an operative electrophysiological protocol to distinguish between direct electrical connections and connections involving one or more intermediate cells. This method allows inferring the number of intermediate cells, generalizing the conventional coupling coefficient, which provides limited information. We validate our method through computer simulations, theoretical and numerical methods and electrophysiological paired recordings.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Limiar Sensorial/fisiologia , Sinapses/fisiologia , Animais , Condutividade Elétrica , Impedância Elétrica , Eletrofisiologia , Junções Comunicantes/fisiologia , Modelos Neurológicos , Ratos , Ratos Wistar , Tempo de Reação , Córtex Somatossensorial/fisiologia
20.
IEEE Trans Vis Comput Graph ; 24(1): 853-861, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866534

RESUMO

This paper presents Abstractocyte, a system for the visual analysis of astrocytes and their relation to neurons, in nanoscale volumes of brain tissue. Astrocytes are glial cells, i.e., non-neuronal cells that support neurons and the nervous system. The study of astrocytes has immense potential for understanding brain function. However, their complex and widely-branching structure requires high-resolution electron microscopy imaging and makes visualization and analysis challenging. Furthermore, the structure and function of astrocytes is very different from neurons, and therefore requires the development of new visualization and analysis tools. With Abstractocyte, biologists can explore the morphology of astrocytes using various visual abstraction levels, while simultaneously analyzing neighboring neurons and their connectivity. We define a novel, conceptual 2D abstraction space for jointly visualizing astrocytes and neurons. Neuroscientists can choose a specific joint visualization as a point in this space. Interactively moving this point allows them to smoothly transition between different abstraction levels in an intuitive manner. In contrast to simply switching between different visualizations, this preserves the visual context and correlations throughout the transition. Users can smoothly navigate from concrete, highly-detailed 3D views to simplified and abstracted 2D views. In addition to investigating astrocytes, neurons, and their relationships, we enable the interactive analysis of the distribution of glycogen, which is of high importance to neuroscientists. We describe the design of Abstractocyte, and present three case studies in which neuroscientists have successfully used our system to assess astrocytic coverage of synapses, glycogen distribution in relation to synapses, and astrocytic-mitochondria coverage.


Assuntos
Astrócitos/citologia , Conectoma/métodos , Imageamento Tridimensional/métodos , Software , Gráficos por Computador , Humanos , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa